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Green Functions and Scattering Theory
e.g. H.Ebert et al. Reports on Progress in Physics, 74, 096501, (2011)

DFT needs to solve the Kohn-Sham equation
(−~

2∇2

2m + V (r; [n]))φi (r) = εiφi (r) where V (r; [n]) is the
effective potential.

This can be framed in terms of the single electron Green
function G (r, r′; ε).

Defined by (ε+ ~2∇2

2m − V (r; [n]))G (r, r′; ε) = δ(r − r′).

Observables can be calculated from G , e.g. the electron
density n(r) = − 1

π Im
∫ εF G (r, r; ε)dε.

In terms of electron states

G (r, r′; ε) =
∑
i

φi (r)φ
∗
i (r′)

(ε− εi )

.
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Potentials and Scattering

Effective Kohn-Sham DFT potentials in a solid, nuclear
Coulombic and electronic screening contribution.

Muffin-tin approximation
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Kohn-Sham Eqs. of DFT in terms of operators

Begin with (ε− Ĥ)|φ >= 0 where Ĥ = −~2∇2

2m + V (r). The

Green function operator corresponding to Ĥ is
Ĝ (ε) = (ε− Ĥ)−1 where ε has a small imaginary part.

With no potential and so for the free electron
(ε− Ĥ0)|ψ >= 0, Ĝ0 = (ε− Ĥ0)−1.

Get a Dyson equation (dropping hats)
G = G0 + G0 V G = G0 + G0 V G0 + G0 V G0 V G0 + · · · .
In terms of the transition operator T such that T G0 = V G ,
G = G0 + G0 T G0.

T describes all possible scattering in the system as it relates
the free-electron G0 to the full scattering G . See
|φ >= |ψ > +G0 V |φ > or |φ >= |ψ > +G0 T |ψ >,
(Lippmann-Schwinger Eq. which relates outgoing scattered
wave to the incoming wave).
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Single site scattering

φ (r) = A
(
e ik·r + f (θ, φ) e

ikr

r

)
φ (r) =

∑
L=l ,m aL(ε)Rl(ε, r)YL(r̂) where Rl(ε, r) is the

solution of the radial Schrödinger equation and YL(r̂) is a
spherical harmonic (YL(r̂) = Yl ,m(θ, φ)).

For r →∞, Rl(ε, r) = 1√
εr

sin[
√
εr − lπ

2 + δl(ε)] where δl(ε)

is a scattering phase shift and leads to t i .

Localised electronic states are characterised by phase shifts
with very sharp resonances, whereas band-like states have
more slowly varying phase shifts.
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Multiple scattering and KKR formalism

Multiple scattering theory describes a problem in terms of
scattering properties of the individual sites.

Some rearranging:
T = V + V G0 T =

∑
i (Vi + Vi G0 T ) =

∑
i T

i with

T i = Vi + Vi G0 T = Vi + Vi G
ii
0 T i +

∑
j 6=i Vi G

ij
0 T j .

For a single potential, the transition operator
t i = Vi + Vi G

ii
0 t

i and we can write T i in terms of ti ’s i.e.

T i = t i +
∑

j 6=i t
i G ij

0 T j .

If we write T =
∑

i T
i =

∑
i

∑
j τ

ij we get

τ ij = t iδij +
∑

k 6=i t
iG ik

0 τ
kj =

t iδij +
∑

k 6=i t
iG ik

0 tkδkj +
∑

k 6=i

∑
l 6=k t

iG ik
0 tkG kl

0 t lδlj + · · · .
τ ij is the scattering path operator. It gives the scattered wave
from site j owing to a wave incident on site i , taking into
account all possible scatterings in between.
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Calculating properties from the KKR

Inside the muffin-tin sphere the radial equation is solved
numerically. At the muffin-tin boundary the solution matches
to a combination of free-electron solutions and fixes the phase
shifts and single site t-operator. Between sites electron
propagates freely.

Green function for DFT, spectra, response functions etc.
G (r, r′, ε) = Z i (ri , ε)τ ij(ε)Z j(r′j , ε)− δijZ i (r<, ε)J i (r>, ε)
where Zn and Jn are solutions to the Schrödinger equation for
a single site potential Vn. (r = ri + Ri , r

′ = r′j + Rj).

Density for DFT: n(r) = − 1
π

∫ εF ImG (r, r, ε)dε.

Density of states: n(ε) = − 1
π

∫
ImG (r, r, ε)dr.

Spectral function:
AB(k, ε) = − 1

π Im
∑

nm e ik·(Rn−Rm)
∫
drG (r + Rn, r + Rm, ε).

 AB(k, ε) =
∑

n δ(ε− εn(k)). In disordered systems peaks
broaden but their positions give an effective band structure,
with their width in energy interpreted as an inverse lifetime.
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Electronic structure of a paramagnetic transition metal
oxide

The electronic structure for MnO in its paramagnetic (DLM) state. The loci of the peaks of the Bloch spectral

function with the shading showing the spin fluctuation disorder broadening of these quasi-particle peaks.

DOS for MnO on Mn and O sites (dashed). The left (right) panel shows the DOS associated with electrons with

spins parallel (anti-parallel) to the local moment on the site. Note the sizeable gap of the paramagnetic state.

I.D.Hughes et al., New .J.Phys.10, 063010, (2008)
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Alloy Solid Solutions and Intermetallics

Mixing of 2 metals (Hume Rothery Rules)
band filling (av. no. of electrons/atom).
atomic size difference.
electronegativity -arrangement of charge around a nucleus.

Solid solution - each site with x (1− x) chance of A (B) atom.
Ordered arrangement - intermetallic. Affects
mechanical,electrical,thermal properties etc.
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Electrons and Disorder - An Effective Lattice

< G ij >= G ij
0 +

∑
kl G

ik
0 Ξkl < G lj >

Ḡ (k) = 1
N

∑
j < G ij > e ik·(Ri−Rj ) = (G−1

0 (k)− Ξ(k))−1

Ξ(k) is a self energy.
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Cluster Approximation

G η
IJ = [G 0,−1 + Ξ− V η]−1

IJ∑
η P(η)G η

IJ = ĜIJ ≈< GIJ >

ĜIJ = 1
ΩBZ

∑
Kn

∫
[G 0(k)− Ξ(Kn]−1e iKn·(RI−RJ)dkn.
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Electronic structure of disordered alloys - examples

Copper-Zinc alloy: pure Cu and Zn, B2-Cu-Zn, Cu50 Zn50.
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Ferromagnetic b.c.c. Fe and Fe80Cr20 alloy: spin-polarised
DOS.
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Atom-atom interactions

Vi ,j = + − −

Atom swapping using Vi ,j ’s, and more complex cluster
interactions. Effect of magnetism. Temperature dependence.

Simulate alloy ordering, both long and short-ranged. Also
defect energetics, elastic properties.
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