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Green’s Function-based for alloys

Alternative description:

• Consider an electron (wave in QM) with energy 𝑬
• Shoot the electron (incoming wave) at a target (e.g. ion) 

• See how it scatters (outgoing wave)

• Moving electron is described by SE

Density Functional Theory (DFT)

Kohn-Sham approach → one-electron Schrödinger equation (SE)
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Computationally expensive and 

harder to implement



Kohn-Sham scheme in practice
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Methods to solve Kohn-Sham equations

Hamiltonian-based:

• Energy-independent basis

• Wave-functions

• Describes stationary states

• Easy to implement

• Only for periodic

(or periodized) systems

• Heavy: Difficult to implement

• Arbitrary perturbation on top of 

a periodic system

Green’s function (GF)-based:

• Energy-dependent basis

• Scattering waves (in, out)

• Response to perturbation



Connection to Hamiltonian Formalism
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However, GF can describe more general systems (e.g. disordered).

Examples later

Equivalent for simple systems



Solution of Schrödinger Equation using GFs
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Green’s Functions of the Perturbed System

GF approach: describes response to arbitrary perturbations

Reference system: e.g. free electrons 𝑽𝟎 = 𝟎
GF: 𝑮𝟎 − easy to calculate 𝑽𝟎

𝑽

Perturbed system: e.g. ionic potential 𝑽
GF: 𝑮 − difficult to calculate directly

𝑮 = 𝑮𝟎 + 𝑮𝟎 ∗ 𝑽 − 𝑽𝟎 ∗ 𝑮

Instead, we can use the Dyson equation

Nonlinear equation for 𝑮: can be solved numerically



Description of alloys

Four methods available:

• Conventional supercell methodology (as used in, say, VASP)

• Coherent potential approximation (CPA)

• Non-local CPA (NL-CPA)

• Locally self-consistent Green’s function (LSGF)



Supercell Approach to alloy modeling

Periodization: Supercell approach

Works both for Hamiltonian and GF methods

An approximation: E.g., residual resistivity 𝝆𝟎 is zero (infinite lifetime)!



What one should know when modeling alloys with supercells

Total energy of a random alloy:

𝑬 =

𝑷

𝑽𝑷𝝃𝑷 , 𝑃 − clusters (pairs, triangles, etc. )

𝝃𝑷 = 𝒑𝒊𝒑𝒋⋯𝒑𝒌 𝒊𝒋𝒌∈𝑷 − correlation functions

If you model your alloy with a supercell there is an error:

𝜹𝑬 = 

𝑷

𝑽𝑷𝜹𝝃𝑷 ,

where

𝜹𝝃𝑷 − deviations of correlation functions

If 𝑽𝑷 are large and 𝜹𝝃𝑷 are non-zero, you might get a very large error



Green’s function approach to alloy modeling

Reference system: Periodic (𝑽𝟎)

GF 𝑮𝟎 is easy to calculate
Distorted system: consider

as perturbation 𝚫𝐕

Can only be implemented within GF-based methodology

Solve Dyson equation to get 𝑮 : 𝑮 = 𝑮𝟎 + 𝑮𝟎 ∗ 𝚫𝐕 ∗ 𝑮

If applied to disordered alloys: gives finite 𝝆𝟎 (and lifetime)



What to be aware of as a DFT-code user?

• Know your cut-offs:

➢ Number of k-points in the BZ

➢ 𝒍𝒎𝒂𝒙 or plane-wave 𝑮𝒎𝒂𝒙: depends on the basis set (see below)

• Which XC term to use

• For magnetic systems: Which magnetic state to use

Atomic units are used:

• Length: 1 au ≈ 0.529 Å, 1 Å = 10−10 m

• Energy: 1 Ry ≈ 13.6 eV, 1 eV ≈ 1.6 ⋅ 10−19 J


