


Extra abilities by Green’s CPA-based methods for alloy properties 

1. Alloy conductivity (resistivity) can be obtained only by methods based on 
MST within CPA (or its extensions);

2. Effective interactions of Ising-type alloy configurational Hamiltonian (GPM, 
S^(2) formalism: both based on the CPA);

3. Magnetic exchange interactions in random alloys also in the magnetically 
disordered state;

4. Continuous concentration dependences of different properties: transport, 
elastic, thermodynamic,…

5. Easy access to (effective) chemical potentials (derivatives wrt
concentration), including inhomogeneous system (surface alloys) also 
containing many alloy components.





The energy of an atomic alloy configuration
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V(n) are effective cluster interactions, which should be determined in some way. 

One (the least intelligent and in many cases quite “dangerous”) way is to use the so-called 
cluster expansion technique (given by the ATAT software, for instance). 
The other one is (can be less accurate and missing some contributions) to use perturbation 
technique within CPA MST theory.



Effective interactions from CPA electronic structure 
calculations: The generalized perturbation method (GPM) 

It is an extremely powerful technique since

1) One should not guess if this interaction important or not (like in the cluster 
expansion method): just calculate it.

2) The calculations are based on the electronic structure of a random alloy with a 
specific composition and at the given lattice parameter.
Thus, they correctly capture specific electronic effects, connecting, for instance, to 
the Fermi surface geometry and topology.
The latter are very important for many alloy systems.

3) It is possibly the only computationally affordable way to get interactions in 
inhomogeneous systems (at surfaces, interfaces and other defects)



Cluster expansion method for Cu-Au

The mixed spaced cluster expansion (MSCE) is used for the representation configurational 
energy (with “constituent strain” interactions in reciprocal space).

30-35 ordered structures used in the calculations
Resulting real-space interactions:

J2(meV)

(meV)

J3-Q3 : V(3)

J4-L4:  V(4)
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The classic metallurgical systems—noble-metal alloys—that have formed the benchmark for various alloy
theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave
~LAPW! total energies of a few ordered structures are used as input to a mixed-space cluster expansion
calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag,
and Ni-Au alloys. ~i! Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to
form compounds and Ni-Au and Cu-Ag to phase separate at T50 K. ~ii! Of all possible structures, Cu3Au
(L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu12xAu x with transition
temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and '670 K. The
significant improvement over previous first-principles studies is attributed to the more accurate treatment of
atomic relaxations in the present work. ~iii! LAPW formation enthalpies demonstrate that L12, the commonly
assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered ~100!
superlattices are stabilized. ~iv! We extract the nonconfigurational ~e.g., vibrational! entropies of formation and
obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T51100 K!, 0.37 kB/atom in
Cu0.141Ag0.859 (T51052 K!, and 0.16 kB/atom in Cu0.5Au0.5 (T5800 K!. ~v! Using 8 atom/cell special
quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good
qualitative agreement with recent extended x-ray-absorption fine-structure measurements.
@S0163-1829~98!08009-6#

I. INTRODUCTION: CHEMICAL TRENDS
IN NOBLE-METAL ALLOYS

Noble-metal alloys are, experimentally, among the most
studied intermetallic systems.1–24 In addition, the Cu-Au sys-
tem has been considered the classic paradigm system for
applying different theoretical techniques of phase diagram
and phase stability calculations.25–63 Most notably, this sys-
tem has been considered as the basic test case for the classic
Ising-Hamiltonian statistical-mechanics treatment of
alloys.25–32 More recently, noble-metal binary alloys have
been treated theoretically via empirical fitting of the
constants in Ising Hamiltonians,25–34 semiempirical inter-
atomic potentials,35–47 and via first-principles cluster
expansions.48–55 The essential difference in philosophy be-
tween the classical application of Ising models to CuAu
~Refs. 25–30 and 33! and more modern approaches based on
the density functional formalism64 is that in the former ap-
proach the range and magnitudes of the interactions are pos-
tulated at the outset ~e.g., first or second neighbor pair inter-
actions!, while the latter approaches make an effort to
determine the interactions from an electronic structure
theory. However, despite recent attempts,48–54 it is still not
clear whether the noble-metal alloys can be essentially char-
acterized as systems with short-range pair interactions or not.
Now that first-principles cluster expansion approaches65,66

have advanced to the stage where both T50 ground state
structures and finite-temperature thermodynamic quantities
can be predicted without any empirical information, it is in-
teresting to take a global look at the noble-metal alloy fam-
ily. Table I summarizes some of the salient

features1–4,14,15,18,67–69 of the four binary systems Cu-Au,
Ag-Au, Cu-Ag, and Ni-Au. We included the relative lattice
constant mismatch Da/ ā52uaA2aBu/uaA1aBu between the
constituents,67 the electronegativity difference Dx5xA2xB
on the Pauling scale,68 the mixing enthalpy of the equiatomic
alloy,2,18 the sign of the calculated nearest-neighbor pair in-
teraction J2 ~present study!, the structural identity of the low-
temperature phases,1–4,67 and the order-disorder transition ~or
miscibility gap! temperatures2,69 Tc . Some interesting obser-
vations and trends, which we will attempt to reproduce theo-
retically, are apparent from this general survey.

~i! Despite a large ~12%! size mismatch in Cu-Au and a
small ('0%! size mismatch in Ag-Au, both systems form
ordered compounds at low temperatures and have negative
mixing enthalpies, suggesting attractive ~‘‘antiferromag-
netic’’! A-B interactions. Thus, when the difference in the
electronegativity, Dx , of the constituent atoms is sufficiently
large, as it is in CuAu and AgAu, size mismatch apparently
does not determine ordering vs phase separation tendencies.

~ii! Despite a similar size mismatch ~12%! in Cu-Au and
Cu-Ag, the former orders while the latter phase separates.
Thus, the existence of a large electronegativity difference in
Cu-Au ~as opposed to the small difference in Cu-Ag! seems
to induce ordering tendencies.

~iii! Cu-Ag and Ni-Au both phase separate ~and have
positive DHmix) as they have large size mismatches. Yet,
Ni-Au, having a large electronegativity difference, shows an
ordering-type nearest-neighbor pair interaction (J2.0), just
like the compound forming Cu-Au and Ag-Au, while Cu-Ag
has a clustering-type nearest-neighbor interaction (J2,0).
Thus, the sign of J2 does not reflect the low-temperature
ordering vs phase separation.
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SGPM vs CLE in CuAu
SGPM: 1) practically all the V(2) = 0 beyond the 4th c.s.

2) all multisite interactions are very small

constituent size mismatch between Cu and Au. The pair in-
teractions are slowly decaying in Cu-Ag and Ni-Au, too.
The calculated multibody interaction energies are shown

in Fig. 6. J1 is the point interaction, J3, K3, N3, . . . are
triplets and J4, K4, and L4 are four-point clusters in increas-
ing order of interatomic separation ~see Lu et al.54 for a full
description of the clusters!. Figure 6 illustrates the impor-
tance of the multibody terms in our Hamiltonian.

D. Finding the T50 ground states and T>0 properties

Having parametrized the configurational energies in terms
of the mixed-space cluster expansion, Eq. ~10!, we can use it

with established statistical methods to predict various struc-
tural properties: T50 ground states, order-disorder transition
temperatures, configurational entropies, free energies, phase
stabilities, and atomic short-range order parameters. Due to
the presence of both reciprocal- and real-space terms in the
Hamiltonian ~10!, traditional techniques, e.g., the cluster
variation method, are not readily applicable. Monte Carlo
simulations must be used instead to calculate statistical prop-
erties at finite temperatures. The basic computational algo-
rithm is as follows. We adopt the Metropolis algorithm in the
canonical ensemble ~fixed composition!. For each attempted
spin flip, the change in the multiplet interaction energy is
evaluated in the real space. To obtain the reciprocal-space
energy ~constituent strain and pair interaction energies!, the
Fourier transform of the spin function S(Ri ,s) is needed. It

FIG. 5. Real-space pair interactions for the studied noble-metal
alloy systems.

FIG. 6. Multibody interactions for the studied noble-metal alloy
systems.
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of the concentration-independent interactions used in the
SIM. Indeed, to the best of our knowledge, no SIM-based
calculation has reproduced the concentration dependence of
the X-point splitting or the concentration dependence of the
LPS stability. However, the simulations by Lu et al.77 exhibit
a rather good agreement with the experimentally observed
real-space SRO parameters in the first several coordination
shells for a wide range of compositions. On the other hand,
as we have seen in the case of the fcc CuZn system, these
SRO parameters are likely to be dominated by the effective
interactions in the first few shells, which presumably are
easier to include in a SIM calculation than the long-ranged
and complex concentration-dependent interactions that deter-
mine the concentration dependence of the X-point splitting.
So far we have only discussed effective pair interactions

which, however, do not provide the complete physical pic-
ture in this system. Consider, for instance, Eq. (9), which
shows that when g̃ij is large in the direction of the nesting
vector, multisite interactions that involve vectors in the nest-
ing direction one or more times may be important even for
quite large distances between the sites. The dramatic effect
of this mechanism is clearly seen in Fig. 14, where we show
the energies of the LPSs at the stoichiometric 75% Cu com-
position. For this illustration, the SGPM Hamiltonian in-
cluded 140 pair interactions, 44 3-site interactions, and a
number of 4-site interactions. It is clear that without the mul-
tisite interactions one does not obtain a quantitative descrip-
tion of the LPS energetics in the CuPd system. Further, the
fact that the minimum energy appears slightly shifted and
becomes shallower with the inclusion of multisite interac-
tions may be important in the determination of a quantita-
tively correct description of the diffuse scattering, where
theory and experiment still show a discrepancy.78
The problem in the calculation of the LPS energetics is

not simply the effect of some large three-site interactions, but
is due to the large number of small yet finite 3-site interac-
tions that must be included in the Hamiltonian. This is illus-
trated in Fig. 15, where we show the contribution from the

first 32 3-site interactions to the energies of LPS3!m=3" and
LPS4m!m=4". At the starting point in the figure we plot the
results of the summation of pair interactions alone. The fol-
lowing point, 111, is the result of adding the contribution to
the ordering energy from interactions of the triangle of near-
est neighbors. As one may see, these interactions do not con-
tribute at all to the LPS energy in spite of the fact that they
are the largest of the 3-site interactions.
It is clear that, although there are many 3-site interactions

which are unimportant and may be omitted in the Hamil-
tonian, those that should be included are quite long-ranged
and large in number. This causes problems both for the SIM
and for the Monte Carlo simulations. In fact, the latter are
slowed down considerably not only by the large number of
3-site interactions in the Hamiltonian but also by the large
degeneracy of each of these interactions. For instance, the
3-site interactions labeled by 134, 137, and 337 have a de-
generacy of 144. In Table I we show some of the most im-
portant 3-site interactions among those calculated. Although
it is in general quite difficult to predict which multisite inter-
action will be important, we have found that the following
simple rule usually works: The strongest multisite interac-

FIG. 13. (Color online) Pair interactions for Cu0.75Pd (top panel)
and Cu0.50Pd (lower panel) shown in the [100] and [110] directions,
the latter being the direction of the nesting vector.

FIG. 14. (Color online) The energies of LPSm in Cu3Pd as a
function of the superstructure vector k=2! /a!11/2m0", relative to
the energy of the L12 structure. Total energy calculations are done
by the KKR-ASA!+M" method.

FIG. 15. (Color online) The relative energies of the LPS3 and
LPS4 in Cu3Pd as a function of the included 3-site interactions. The
final point marks the final energy found by including all calculated
(44) 3-site interactions.
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(Figs. from I. Wilkinson, et al Phys. Rev. Lett. 87, 216401 (2001))



Fermi surface topological transition at ~ 8-10 at. %

P.A. Korzhavyi, et al. 2009



Non-trivial concentration dependence of ECI
(in the ferromagnetic state)



Continuous description of “energetics” of random alloys 

Ponomareva et al., Acta Mat. (2018) 

Mixing enthalpy, ∆𝐻, and its second derivative 
with respect to concentration: !

!"
! #!

for  Fe-Cr 
alloys.

Such calculations allow one to see the effect of 
alloying on the spinodal decomposition (the 
inflection point of ∆𝐻) 

It is practically impossible to get reasonable 
smooth concentration dependences of ∆𝐻
using supercell calculations.



Effective chemical potentials by CPA I: formation energies of 
thermal vacancies in random alloys  

Although CPA calculations seem to be perfect here, in fact they do not make sense 
here since usually vacancy-atom interactions are quite different for different alloy 
components.

Thus, either one should use a specific cluster expansion, or do direct calculations by 
using a relatively large supercell, which models the corresponding random alloy.

Thermal vacancies in random alloys in the single-site mean-field approximation

A. V. Ruban
Department of Materials Science and Engineering,
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A formalism for the vacancy formation energies in random alloys within the single-site mean-
filed approximation, where vacancy-vacancy interaction is neglected, is outlined. It is shown that
the alloy configurational entropy can substantially reduce the concentration of vacancies at high
temperatures. The energetics of vacancies in random Cu0.5Ni0.5 alloy is considered as a numerical
example illustrating the developed formalism. It is shown that the e↵ective formation energy is
increases with temperature, however, in this particular system it is still below the mean value
of the vacancy formation energy which would correspond to the vacancy formation energy in a
homogeneous model of a random alloy, such as given by the coherent potential approximation.

PACS numbers: 62.20.D-, 31.15.A-, 62.20.de, 75.30.Ds, 75.20.En

Concentration of vacancies is one of the key parame-
ters, which determines the kinetic of phase transforma-
tion and di↵usion in solids. In spite of the structural
simplicity of vacancies, their energetics has proven to be
one of the least reliable physical properties determined
in the first principles calculations (see, for instance, Ref.
1–6). The situation becomes even more complicated at
high temperatures, where anharmonic e↵ects play an im-
portant role.6

In this paper, we will not however deal with those prob-
lems related to di↵erent approximations in first-principles
calculations and subsequent modelling of the vacancy
thermodynamics, but rather consider another important
aspect, namely, the statistical description of vacancies in
concentrated alloys at finite temperature connected with
their first-principles modelling. This topic has recently
been recently attracted attention of several groups doing
first-principles simulations.7–9 In contrast to those inves-
tigations, in this work a simplified model for the energet-
ics of vacancies will be presented for completely random
alloys with the purpose to get a qualitative picture of the
configurational e↵ects.

It is based on the single-site mean-field approxima-
tion, and thus all the e↵ects related to the vacancy-
vacancy interactions will be ignored, while vacancy-alloy-
component interactions will be indirectly taken into con-
sideration through the account of the local environment
e↵ects next to the vacancy. Although this is a simpli-
fied model, it anyway yields a quite accurate description
of the phenomenon in real systems. To demonstrate the
formalism, we will consider the energetics of vacancies in
Cu0.5Ni0.5 random alloy.

The vacancy formation energy at 0 K in a binary ran-
dom AcB1�c alloy can be formally defined as

E0
f = min

dE0(Ac(1�cv )B(1�c)(1�cv )Vacv )

dcv
|cv=0, (1)

where E0 is the total energy per atom of a random
Ac(1�cv)B(1�c)(1�cv)Vacv alloy consisting cv concentra-

tion of vacancies (Va). This definition takes into con-
sideration the fact that the derivative in (1) is not well
defined since in real random alloys there exist substan-
tial fluctuations of local compositions, which a↵ect this
derivative leading to a wide spectrum of the local vacancy
formation energies connected to the specific space ar-
rangements of the alloy components around the vacancy.
At 0 K, the vacancy formation energy, E0

f is apparently
determined by the lowest value of the derivative in (1).
The dependence of the vacancy formation energy on

the local environment can be also viewed as interac-
tion energy between vacancy and alloy components.
Nowadays, it can be obtained in first-principles calcu-
lations using, for instance, the so-called ”local cluster
expansion”.7,9 If a supercell approach is used to deter-
mine local vacancy formation energies in random alloys,
these e↵ects can be naturally reproduced since the fluc-
tuations of the local environment around each site are
inevitable.
The existence of the local environment e↵ects becomes

important at finite temperatures, where vacancies with
higher formation energies can be also created. For a given
alloy configuration one can introduce the local vacancy
formation energy distribution function, g(E), which de-
termines the number of sites, Ng(E) in the alloy sample
of size N , where the local vacancy formation energy is E,
which satisfies the following normalisation:

Z
dEg(E) = 1. (2)

At finite temperatures, g(E) determines the distribu-
tion of vacancies with respect to their local environment.
To obtain it, we fist define e↵ective vacancy formation en-
ergy or free energy, which connects the free energy of the
system with concentration of vacancies in a phenomeno-
logical way. For a binary random AcB1�c alloy, it is
defined as

Gvac = cvḠf � TSconf , (3)This is a formal definition, which provides the conservation of the alloy
composition cA/cB= const  (at T = 0K).



Vacancy formation energies by combined supercell – CPA approach
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where cv is the equilibrium concentration of vacancies;
Ḡf is the e↵ective vacancy formation free energy and
Sconf the configurational entropy of an alloy with vacan-
cies:

Sconf = �[cv ln cv + (4)

c(1� cv) ln [c(1� cv)] +

(1� c)(1� cv) ln [(1� c)(1� cv)]],

where it is explicitly assumed that the alloy composition
is preserved during vacancy formation.

In the single-site approximation, the minimisation of
(3) under the condition that the concentration of vacan-
cies is substantially smaller than that of alloy components
yields:

cv = exp


� Ḡf + TSall

T

�
⌘ exp

"
�

eGf

T

#
, (5)

where Sall = �[c ln c+(1�c) ln(1�c)] is the alloy configu-
rational entropy without vacancies and eGf = Ḡf +TSall

is the renormalised vacancy formation energy due to the
randomness of the alloy.

This result shows that the alloy configurational entropy
can substantially reduce the concentration of vacancies in
alloys. For instance, in the equiatomic binary random al-
loy (c=0.5), the equilibrium concentration is reduced by
a factor of 2 compared to that in pure metal. At 1500
K, it corresponds to an approximate increase of the e↵ec-
tive vacancy formation energy of about 0.09 eV. Let us
note that the above derivation holds for multicomponent
alloys, where this e↵ect can be much more pronounced.
For instance, in a four-component equimolar (frequently
called ”high entropy”) random alloy the concentration of
vacancies will be 4 times lower than that in pure metal
having the same vacancy formation energy, which corre-
sponds to the additional increase of the e↵ective vacancy
formation energy of about 0.18 eV at 1500 K.

Considering vacancies at di↵erent sites as independent,
i.e. neglecting vacancy-vacancy interaction and assuming
that the vacancy formation entropy, Sf , associated with
vibrational, magnetic and electronic degrees of freedom,
does not depend on the local environment, it is easy to
show that

cv = exp(Sf � Sall)

Z
dEg(E) exp

✓
�E

T

◆
. (6)

Otherwise one should consider the distribution function
for the local vacancy formation free energies, gG(G).
The expression under the integral in (6) is just the con-
centration of vacancies for specific energy formation E:
cv(E) = g(E) exp

�
�E

T

�
. Comparing (5) and (6), one

finds that

Ḡf = �T ln

Z
dEg(E) exp

✓
�E

T

◆�
� TSf , (7)

or the e↵ective vacancy formation energy, Ēf is

Ēf = �T ln

Z
dEg(E) exp

✓
�E

T

◆�
, (8)

while the renormalised vacancy formation energies will
have an additional contribution TSall: eGf = Ḡf + TSall

and eEf = Ēf + TSall.
Let us now consider vacancy energetics in Cu0.5Ni0.5

random alloy. It should be stressed again that only a
configurational part of the problem will be considered
here, without any complications related to other ther-
mal e↵ects, such as electronic, vibrational or magnetic
excitations. We therefore also disregard thermal lattice
expansion and perform calculations for a fixed lattice pa-
rameter of 3.56 Å.
To determine the local vacancy formation energies,

we use the exact-mu�n-tin orbital locally self-consistent
Green’s function (ELSGF) method,10 which allows rela-
tively accurate first-principles calculations of the vacancy
formation energies, at least on a rigid lattice without a
consideration of the local lattice relaxations. The lat-
ter may decrease the vacancy formation energy by 0.1 –
0.2 eV, which is comparable with the usual error due to
the use of di↵erent exchange-correlation approximations.
The supercell size has been chosen to be 108 atoms (a
3⇥3⇥3 cell build upon the 4-atom cubic fcc cell).
Every atom in this supercell was exchanged by a va-

cancy, and then the local vacancy formation energy at
site i, Ei

f , has been determined as

Ei
f = Ei

vac �
N � 1

N
Eall � (N � 1)�cµeff , (9)

where Ei
vac is the total energy of the supercell with

vacancy at site i; Eall the total energy of the defect
free supercell; N is the number of atoms in the super-
cell; �c is the change of the supercell composition due
to vacancy formation (for instance, in our case �c =
±(53/107 � 54/108), and µeff is the e↵ective chemical
potential of the alloy determined as

µeff =
@E0(AcB1�c)

@c
. (10)

Here, the E0 is the total energy per atom of random
AcB1�c alloy. The latter can be quite accurately (and
what is important: consistently with the LSGF calcu-
lations) obtained by the EMTO-CPA method11,12 us-
ing the Lyngby version of the code13 with the appro-
priate choice of the electrostatic screening constants (de-
termined again from the corresponding ELSGF supercell
calculations14).
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Here, the E0 is the total energy per atom of random
AcB1�c alloy. The latter can be quite accurately (and
what is important: consistently with the LSGF calcu-
lations) obtained by the EMTO-CPA method11,12 us-
ing the Lyngby version of the code13 with the appro-
priate choice of the electrostatic screening constants (de-
termined again from the corresponding ELSGF supercell
calculations14).

In supercell calculations, the vacancy formation for a particular site i is

where is the effective chemical potential

This term is needed to provide the composition conserving condition in the case of 
thermal vacancies.  

In general, finding the effective chemical potential for a random alloy in supercell 
calculations requires a lot of computational effort, but it is a trivial (almost) task using 
CPA. The only condition is that both supercell and CPA electronic structure methods 
should be consistent. This is the case of, for instance, ELSGF and EMTO-CPA 
methods (Lyngby version of the code).
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FIG. 1. (Color online) Local vacancy formation energies in
108-atom supercell representing a random Cu0.5Ni0.5 alloy.
The distribution of the local vacancy formation energies with
respect to the number of the Cu nearest neighbours is shown
in the top panel of the figure, while the distribution with re-
spect to the number of the next nearest neighbours is shown in
lower panel. In the latter case only sites having 6 Cu nearest
neighbours are included in the figure. Straight lines show the
average slopes, which corresponds to the vacancy-Cu interac-
tion at the first and second coordination shell, respectively.

Other details of the calculations are the following. The
partial waves up to lmax = 3 were used in the self-
consistent calculations. The total energies have been
obtained using the full charge density technique.12 The
ELSGF calculations have been performed using the lo-
cal interaction zone (LIZ) which included the first two
coordination shells around the central site. This means
that chemical configurational e↵ects were e↵ectively cut
o↵ beyond the second coordination shell (which is not
the case of electrostatic interactions, although they are
relatively weak in this system, and some multisite in-
teractions for the clusters within the LIZ). The PBE-sol
exchange-correlation potential3 has been used, which is
partly the reason for the di↵erence of the present results
and those of Ref. 9.

In Fig. 1, the local vacancy formation energies are
shown as a function of the number of Cu atoms next to
the vacancy.15 Although there is a dispersion of the local
vacancy formation energies for every number of Cu near-
est neighbours, they almost linearly decrease with the
number of Cu nearest neighbours. The slope of the aver-
age descent of the local energies is in fact the vacancy-Cu
(or vacancy-Ni if taken with the opposite sign) interac-
tion energy, which is approximately �0.082 eV for the
first and 0.018 eV for the second coordination shells. The
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FIG. 2. (Color online) Local vacancy formation energy dis-
tribution functions: squares are the results of the 108-atom
supercell calculations; circles are binomial distribution (see
text) and crosses are normal distribution.

dispersion is due to other type of interactions.
It should be mentioned that there is no apparent de-

pendence of the local vacancy formation energies on the
type of the atom occupying this site in the defect free su-
percell. This contrasts with the results obtained in Ref.
9 where much smaller supercells have been used. From
a general point of view, such a dependence should not
exist in the macroscopic limit, unless a ghost of the re-
moved atom is still in the site. Although in the reality
nobody is certain about ghosts, it cannot exist in the well
determined first-principles calculations.
The spurious dependence can originate from some

technical details of the modeling. For instance, it is clear
that small supercells, of an order of tens of atoms, provide
quite a bad model for investigation of the local environ-
ment e↵ects due to the fact that no good statistics can be
obtained just from several sites. Besides, every exchange
of an atom by vacancy leads to the di↵erent (from the
initial) on average atomic distribution correlations func-
tions.
The di↵erence in statistics of the local environment

for di↵erent alloy components of course also exists in the
case of the used here 108-atom supercell, where the rep-
resentation of the possible local environment e↵ects is
also quite restricted. It can be clearly seen in Fig. 1 that
there are no sites in the supercell completely surrounded
by Cu or Ni atoms, and there is only one site with 11 Cu
nearest neighbours, while there are no sites with 11 Ni
nearest neighbours.
In spite of this fact, one can still establish a qualita-

tively clear picture of the local environment e↵ects in
alloy. In Fig. 2, the local vacancy formation energy
distribution function, g(E), obtained from the present
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FIG. 1. (Color online) Local vacancy formation energies in
108-atom supercell representing a random Cu0.5Ni0.5 alloy.
The distribution of the local vacancy formation energies with
respect to the number of the Cu nearest neighbours is shown
in the top panel of the figure, while the distribution with re-
spect to the number of the next nearest neighbours is shown in
lower panel. In the latter case only sites having 6 Cu nearest
neighbours are included in the figure. Straight lines show the
average slopes, which corresponds to the vacancy-Cu interac-
tion at the first and second coordination shell, respectively.

Other details of the calculations are the following. The
partial waves up to lmax = 3 were used in the self-
consistent calculations. The total energies have been
obtained using the full charge density technique.12 The
ELSGF calculations have been performed using the lo-
cal interaction zone (LIZ) which included the first two
coordination shells around the central site. This means
that chemical configurational e↵ects were e↵ectively cut
o↵ beyond the second coordination shell (which is not
the case of electrostatic interactions, although they are
relatively weak in this system, and some multisite in-
teractions for the clusters within the LIZ). The PBE-sol
exchange-correlation potential3 has been used, which is
partly the reason for the di↵erence of the present results
and those of Ref. 9.

In Fig. 1, the local vacancy formation energies are
shown as a function of the number of Cu atoms next to
the vacancy.15 Although there is a dispersion of the local
vacancy formation energies for every number of Cu near-
est neighbours, they almost linearly decrease with the
number of Cu nearest neighbours. The slope of the aver-
age descent of the local energies is in fact the vacancy-Cu
(or vacancy-Ni if taken with the opposite sign) interac-
tion energy, which is approximately �0.082 eV for the
first and 0.018 eV for the second coordination shells. The
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FIG. 2. (Color online) Local vacancy formation energy dis-
tribution functions: squares are the results of the 108-atom
supercell calculations; circles are binomial distribution (see
text) and crosses are normal distribution.

dispersion is due to other type of interactions.
It should be mentioned that there is no apparent de-

pendence of the local vacancy formation energies on the
type of the atom occupying this site in the defect free su-
percell. This contrasts with the results obtained in Ref.
9 where much smaller supercells have been used. From
a general point of view, such a dependence should not
exist in the macroscopic limit, unless a ghost of the re-
moved atom is still in the site. Although in the reality
nobody is certain about ghosts, it cannot exist in the well
determined first-principles calculations.
The spurious dependence can originate from some

technical details of the modeling. For instance, it is clear
that small supercells, of an order of tens of atoms, provide
quite a bad model for investigation of the local environ-
ment e↵ects due to the fact that no good statistics can be
obtained just from several sites. Besides, every exchange
of an atom by vacancy leads to the di↵erent (from the
initial) on average atomic distribution correlations func-
tions.
The di↵erence in statistics of the local environment

for di↵erent alloy components of course also exists in the
case of the used here 108-atom supercell, where the rep-
resentation of the possible local environment e↵ects is
also quite restricted. It can be clearly seen in Fig. 1 that
there are no sites in the supercell completely surrounded
by Cu or Ni atoms, and there is only one site with 11 Cu
nearest neighbours, while there are no sites with 11 Ni
nearest neighbours.
In spite of this fact, one can still establish a qualita-

tively clear picture of the local environment e↵ects in
alloy. In Fig. 2, the local vacancy formation energy
distribution function, g(E), obtained from the present
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ab initio calculations is shown. It was calculated using
0.08 eV energy interval window, which corresponds to
the average change of the local vacancy formation energy
when the number of the Cu nearest neighbours changes
by one. As one can see, it can be very well approximated
by the discreet binomial distribution, which for a binary
equiatomic alloy is

gb(E(n)) =
12!

212n!(12� n)!
, (11)

for n going from 0 to 12 and Ef (n) = E0
f + nV1 where

E0
f is the lowest local vacancy formation energy (as it is

determined in Eq. (1)), which corresponds to the case
n = 0 and V1 is the positive interaction energy between
the vacancy and the counted by n alloy component. It is
clear that such a choice of interaction, which is positive in
this case, can be always made. In our case, it corresponds
to the vacancy-Ni interaction and thus n is the number
of Ni atoms next to the vacancy.

Equally, the local vacancy formation energy distribu-
tion function, g(E), can be approximated by the contin-
ues normal distribution (for the equiatomic composition
only) as

gn(E) =
1

�
p
2⇡

exp


� (E � hEf i)2

2�2

�
, (12)

where hEf i is the mean local vacancy formation energy,
which is about 1.9 eV in this particular case, and � =
2|V1|.

Using gn(E) and (8), one can calculate the e↵ective,
Ēf , and renormalised, eEf , vacancy formation energies as
functions of temperature (no thermal lattice expansion
and other e↵ects are included). They are shown in Fig.
3. As one can see, both vacancy formation energies, ef-
fective and renormalised, exhibit quite strong dependence
on the temperature at low temperatures, while at higher
temperatures, Ēf changes quite little and eEf grows lin-
early with temperature. It is interesting that at least in
this particular case Ēf does not reach the mean value,
hEf i even at relatively high temperatures.

In fact, hEf i corresponds to the vacancy formation en-
ergy obtained in the homogeneous CPA calculations like
those in Ref. 16 and 17, where all the sites of the supercell
are treated as e↵ective CPA medium of the given alloy
composition. This means, that such energies do not make
much sense in systems, where the local vacancy forma-
tion energies strongly depend on their local environment,
like Cu-Ni calculated here.

Another energy of interest is the local vacancy forma-
tion energy, which yields dominating contribution to the
vacancy concentration at a given temperature. It is re-
lated to the dominating type of the local environment of
vacancies at given T and can be found by maximising
cv(E). In the case of a binary equiatomic alloy, it can
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FIG. 3. (Color online) E↵ective (Ēf ) and renormalised ( eEf )
vacancy formation energies in random Cu0.5Ni0.5 alloy ob-
tained as a function of concentration neglecting all the possi-
ble type of thermal excitations except configurational in the
single-site mean field approximation. The dashed line shows
the mean value of the vacancy formation energy, hEf i, which
one, for instance, would obtain in the homogeneous CPA cal-
culations.

be approximately obtained using the normal distribution
gn(E) of the local vacancy formation energies:

Emax = hEf i �
�2

T
= hEf i �

4V 2
1

T
. (13)

It is shown in Fig. 3. As one can see, it is less than the
e↵ective formation energy, although at low temperatures,
its definition (13) breaks down since gn(E) is always non-
zero for all positive energies, while g(E) of a real system is
non-zero only within some specific energy interval above
E0

f .
Now, we can estimate the preferential local environ-

ment of vacancies at a given temperature. Since hEf i ⇡
E0

f + (z1/2)V1, where z1 is the number of the nearest
neighbour sites, the number of Ni atoms next to the va-
cancy with the local formation energy Emax at tempera-
ture T is

n(Emax) =
z1
2

� 4V1

T
. (14)

This is a quite interesting result showing first of all
that this number is inverse proportional to the tempera-
ture, which explains the results of Ref. 9 in Fig. 12 for
the average number of Cu nearest neighbours next to the
vacancy (that would actually correspond to n(Ēf )), and,
besides, the fact that this number should be always less
than z1/2, which is just the average number of Ni (or
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Ēf , and renormalised, eEf , vacancy formation energies as
functions of temperature (no thermal lattice expansion
and other e↵ects are included). They are shown in Fig.
3. As one can see, both vacancy formation energies, ef-
fective and renormalised, exhibit quite strong dependence
on the temperature at low temperatures, while at higher
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Surface segregation energy:

Surface energy:

Bulk effective chemical potential:

Thus, in CPA method segregation energy is given by the difference of the 
effective chemical potentials in particular layer (𝜆) and in the bulk.
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A B S T R A C T   

Segregation modelling in multicomponent random alloys within the single-site mean-field approximation is 
considered. As an example, the surface segregation in austenite Fe70Cr20Ni10 and equimolar Fe20Mn20-

Co20Cr20Ni20 random fcc alloy towards the (111) facet is calculated using ab initiomultiple scattering technique in 
the coherent potential approximation (CPA). The results show a very similar trend in both alloys: relatively 
strong surface segregation of Ni and strong anti-segregation of Cr. However, in the case of Fe70Cr20Ni10, the 
reversal of the surface enrichment from Ni to Fe is observed at 1750 K, while the surface of FeMnCoCrNi is Ni- 
rich up to 2500 K.   

1. Introduction 

Theoretical description of atomic segregation to different types of 
defects in multicomponent random alloys is subject that has recently 
attracted some interest [1,2]. In general, the reliable results are expected 
when atomistic modelling is combined with accurate ab initio calcula-
tions. In the case of concentrated random alloys, this can be quite 
tedious procedure if the usual Hamiltonian first-principles technique is 
used since it requires a substantial number of large supercell calculations 
in order to get the parameters of an atomistic Ising-type Hamiltonian 
(see, for instance, Refs. [3–8]). 

At the same time, if the size mismatch of alloy components is rela-
tively small, the ab initio modelling of segregation in random alloys can 
be greatly simplified by using multiple scattering techniques, which 
allow very efficient and in many cases sufficiently accurate electronic 
structure and total energy calculations of random alloys within the 
coherent potential approximation (CPA) [9,10]. 

In this paper, two examples are considered for a demonstration: 
austenitic steel with composition Fe70Cr20Ni10 and equimolar FeMn-
CoCrNi alloy. Austenitic stainless steels are very important industrial 
materials, which usually contain Fe, Cr, and Ni in different proportions. 
The case of FeMnCoCrNi random alloys is interesting as a variation of 
austenitic steels composition with addition of Mn and Co, which are also 
frequently added to steels as alloying elements. 

In fact, the segregation in this alloy has been recently studied in 

Ref. [1] by embedded atom method and in Ref. [2] by a combination of 
different ab initiomethods, including the CPA-based technique used in 
the present study. In the first case, the main focus was on the grain 
boundary segregation and the (001) surface. In the latter case, the 
segregation energies and effect of oxygen on the segregation behaviour 
of alloy components have been investigated. 

In this paper, a more general consideration of the surface segregation 
energies is given together with a single-site mean-field formalism for the 
surface composition. Although both alloys exhibit quite strong ordering 
tendency, which cannot be neglected in their accurate modelling at low 
temperature, here, the ordering effects are neglected in order to show 
just qualitative trends at relatively high temperature. 

2. Formalism 

2.1. Chemical potentials and segregation energies of a multicomponent 
random alloy 

Surface segregation can be quantified by the surface segregation 
energy. In the case of a binary random alloy, it is usually defined for a 
homogeneous concentration profile, i.e. when the concentration in 
every layer of the surface region is the same as in the bulk, and it is 
uniquely determined by the difference of the effective chemical poten-
tials of one of the alloy components in the corresponding layer and in the 
bulk. 
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and surface the most favourable. It is very interesting that although the 
compositions of these two alloys are quite different, both the unary and 
binary surface segregation energies are almost the same for the same 
elements. The results for FeMnCrCoNi are in agreement with the results 
of Ref. [2], which are obtained in nonmagnetic, ferromagnetic, and DLM 
calculations. 

This would in general be the case of “ideal” alloys, where the 
interaction between alloy components is very weak. Obviously, it is not 
the case of both alloys, where, for instance, Cr and Ni atoms exhibit quite 
strong ordering [11,12]. There exists also very strong ordering between 
Co and Cr (at the first coordination shell) in FeMnCoCrNi alloy. The 
reason, why it is not reflected in this particular case is the fact that in 
both alloys, the concentrations of Cr and Ni in the bulk are close to each 
other, which practically eliminates this contribution [8]. 

3.3. Composition of the surface layer in austenite and FeMnCrCoNi alloy 
at finite temperature 

The calculated surface segregation energies have been used to esti-
mate the composition of the (111) surface in both alloys using Eq. (15) 
for a wide temperature range. In accurate modelling, the segregation 
energy should, of course, be temperature dependent accounting for the 
thermal lattice expansion and entropy contributions from different ex-
citations. That has been neglected here within the present semi- 
qualitative consideration, since the driving chemical force for the sur-
face segregation is anyway dominating even at high temperatures: the 
surface segregation energy for Cr-Ni pair is an order of 0.5 eV, i.e. 5500 
K. 

The calculated surface composition of both alloys as a function of 
temperature is presented in Figs. 1 and 2. As one can expect, at low 
temperatures, below 700 K, mostly Ni is present at the surface, while the 
concentration of Cr is very small even at high temperatures. The tem-
perature dependences of the Ni concentration in the surface layer are 
very similar in both alloys, with slightly less segregation tendency in 
Fe70Cr20Ni10, where the bulk concentration of Ni is twice as small as in 
FeMnCoCrNi. 

The surface concentration of Fe is, of course, substantially higher in 
Fe70Cr20Ni10 than in FeMnCoCrNi, which is due to the difference of the 
Fe concentration in these alloys. These leads also to an interesting sur-
face enrichment reversal with temperature in the case of Fe70Cr20Ni10: 
Ni-rich surface below ≈1750 K becomes Fe-rich at higher temperatures. 
Such a reversal does not happen in the case of FeMnCoCrNi: the con-
centration of Ni in the surface layer is higher 50 at.% up to 2500 K, 
although the segregation energies of Co and Mn are close to that of Fe 
and their common concentration with Fe is 60 at.% in the bulk. This is 

probably due to the fact the concentration of Ni in FeMnCoCrNi is twice 
as large as in Fe70Cr20Ni10. 

It is worth noting that the present results for the surface composition 
of these alloys make sense only in the vacuum. At the real life conditions, 
interactions of alloy components with gases in the environment (atmo-
sphere) are usually much stronger than segregation energies and 
therefore not only the surface composition of these alloys but actually 
their phase composition can be totally different, for instance, due to 
oxides formation [2]. In fact, Fe and Cr oxides formation actually makes 
austenitic steels stainless. Nevertheless, the surface segregation phe-
nomena may still play an important role in physical processes related to 
the growing films or material at special conditions. 

4. Conclusions 

In this paper, a formalism for segregation calculations in multicom-
ponent random alloys is presented, which can be applied to different 
types of extended defects. Here, it is used to calculate the surface 
segregation in random Fe70Cr20Ni10 and FeMnCoCrNi alloys. 

The segregation energies for the (111) surface follow the usual trend 

Table 2 
Binary, ∊s

ij, and unary, ∊s
i , (in parentheses) surface segregation energies (in eV) in 

Fe70Cr20Ni10.  

Element Cr Fe Ni 

Cr (0.29) 0.26 0.53 
Fe −0.26 (−0.07) 0.30 
Ni −0.53 −0.30 (-0.35)  

Table 3 
Binary, ∊s

ij, and unary, ∊is, (in parentheses) surface segregation energies (in eV) 
in FeMnCoCrNi random alloy. The bold font is used to simplify the comparison 
for the same pairs and alloy components in Fe70Cr20Ni10.  

Element Cr Mn Fe Co Ni 

Cr (0.33) 0.23 0.24 0.31 0.52 
Mn −0.23 (0.04) 0.02 0.08 0.29 
Fe −0.24 −0.02 (0.02) 0.07 0.28 
Co −0.31 −0.08 −0.07 (−0.06) 0.21 
Ni −0.52 −0.31 −0.28 −0.21 (−0.32)  

Fig. 1. Composition of the surface layer of Fe70Cr20Ni10 random alloy as a 
function of temperature. 

Fig. 2. Composition of the surface layer of FeMnCoCrNi random alloy as a 
function of temperature. 
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surface segregation energy for Cr-Ni pair is an order of 0.5 eV, i.e. 5500 
K. 

The calculated surface composition of both alloys as a function of 
temperature is presented in Figs. 1 and 2. As one can expect, at low 
temperatures, below 700 K, mostly Ni is present at the surface, while the 
concentration of Cr is very small even at high temperatures. The tem-
perature dependences of the Ni concentration in the surface layer are 
very similar in both alloys, with slightly less segregation tendency in 
Fe70Cr20Ni10, where the bulk concentration of Ni is twice as small as in 
FeMnCoCrNi. 

The surface concentration of Fe is, of course, substantially higher in 
Fe70Cr20Ni10 than in FeMnCoCrNi, which is due to the difference of the 
Fe concentration in these alloys. These leads also to an interesting sur-
face enrichment reversal with temperature in the case of Fe70Cr20Ni10: 
Ni-rich surface below ≈1750 K becomes Fe-rich at higher temperatures. 
Such a reversal does not happen in the case of FeMnCoCrNi: the con-
centration of Ni in the surface layer is higher 50 at.% up to 2500 K, 
although the segregation energies of Co and Mn are close to that of Fe 
and their common concentration with Fe is 60 at.% in the bulk. This is 

probably due to the fact the concentration of Ni in FeMnCoCrNi is twice 
as large as in Fe70Cr20Ni10. 

It is worth noting that the present results for the surface composition 
of these alloys make sense only in the vacuum. At the real life conditions, 
interactions of alloy components with gases in the environment (atmo-
sphere) are usually much stronger than segregation energies and 
therefore not only the surface composition of these alloys but actually 
their phase composition can be totally different, for instance, due to 
oxides formation [2]. In fact, Fe and Cr oxides formation actually makes 
austenitic steels stainless. Nevertheless, the surface segregation phe-
nomena may still play an important role in physical processes related to 
the growing films or material at special conditions. 

4. Conclusions 

In this paper, a formalism for segregation calculations in multicom-
ponent random alloys is presented, which can be applied to different 
types of extended defects. Here, it is used to calculate the surface 
segregation in random Fe70Cr20Ni10 and FeMnCoCrNi alloys. 

The segregation energies for the (111) surface follow the usual trend 

Table 2 
Binary, ∊s

ij, and unary, ∊s
i , (in parentheses) surface segregation energies (in eV) in 

Fe70Cr20Ni10.  

Element Cr Fe Ni 

Cr (0.29) 0.26 0.53 
Fe −0.26 (−0.07) 0.30 
Ni −0.53 −0.30 (-0.35)  

Table 3 
Binary, ∊s

ij, and unary, ∊is, (in parentheses) surface segregation energies (in eV) 
in FeMnCoCrNi random alloy. The bold font is used to simplify the comparison 
for the same pairs and alloy components in Fe70Cr20Ni10.  

Element Cr Mn Fe Co Ni 

Cr (0.33) 0.23 0.24 0.31 0.52 
Mn −0.23 (0.04) 0.02 0.08 0.29 
Fe −0.24 −0.02 (0.02) 0.07 0.28 
Co −0.31 −0.08 −0.07 (−0.06) 0.21 
Ni −0.52 −0.31 −0.28 −0.21 (−0.32)  

Fig. 1. Composition of the surface layer of Fe70Cr20Ni10 random alloy as a 
function of temperature. 

Fig. 2. Composition of the surface layer of FeMnCoCrNi random alloy as a 
function of temperature. 
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Screened Coulomb interactions
Two parameters in the data file for alloy CPA calculations:
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However, there are actually no parameters in 
the CPA electronic structure calculations.

However, since it is a single-site approximation, which means that electron density 
of alloy components is determined only inside the corresponding atomic sphere. 
This creates problem in DFT self-consistent loop: one cannot solve accurately the 
Poisson equation. This problem is fixed by addition the screening contribution to 
the one-electron potential and electrostatic energy:

As has been recently demonstrated, the screened GPM
!SGPM", which includes the corresponding screening correc-
tion, produces effective interactions yielding accurate con-
figurational energetics in the bulk and as well as at the sur-
face of metallic systems.10,21,22

In this paper we apply the SGPM to bulk and surface
Ag-Pd alloys. On the one hand, this allows us to illustrate the
above-mentioned points and, on the other hand, to learn
something new about this system. There are several reasons
to expect that the SGPM should be fairly accurate for Ag-Pd
alloys. First of all, Ag and Pd are neighbors in the Periodic
Table and therefore the CPA error cannot be large. Second,
the size difference of Ag and Pd is comparatively small, so
the relaxation effects are practically negligible in this system.
This allows one to neglect these effects in thermodynamic
consideration without losing important physics !we will in-
clude them, however, when they are needed for reaching a
final verdict on stability issues".

According to the existing experimental information, Ag
and Pd form continuous fcc solid solutions over the whole
concentration range below the melting point.23 Nevertheless,
the first-principles calculations have predicted the existence
of ordering tendencies in this system.24–26 In particular,
Müller and Zunger25 have found three ground state struc-
tures: L12 for Ag3Pd, L11 for AgPd, and the so-called L11

+ for
AgPd3, with transition temperatures 340, 320, and 270 K,
respectively. These results are in agreement with those by Lu
et al.24 and Curtarolo et al.26 for the Ag-Pd alloys, although
Curtarolo et al.26 have found the L12 structure to be just
marginally stable compared to the DO22 structure for Ag3Pd.

In this paper we study the ordering trends in Ag-Pd alloys.
In order to have a more general picture we also investigate
the ordering behavior in alloys isoelectronic to Ag-Pd: Cu-
Pd, Au-Pd, Cu-Pt, Ag-Pt, and Au-Pt. We analyze the origin of
the ordering trends in terms of the effective interactions. Fi-
nally we calculate the surface concentration profiles and
chemical ordering for the !111" and !100" surfaces of
Ag75Pd25, Ag50Pd50, and Ag33Pd67 alloys using effective in-
teractions obtained by the SGPM and on-site interactions
!surface segregation energies" from the corresponding sur-
face Green’s function calculations. The composition of the
!111" and !100" surfaces of Ag33Pd67 has been recently ob-
tained by means of the scanning tunneling microscopy
!STM" experiments.27 It has been established that the con-
centration of Pd atoms on the !111" surface varies in the
range of 5%–11% for temperatures 720–920 K, while the
!100" surface is entirely covered by Ag atoms. The STM is a
unique technique, using which one can practically make di-
rect observations of the surface structure, and therefore these
data can be considered as reliable.

II. METHODOLOGY

A. Electronic structure and total energy calculations

Several different first-principles techniques have been
used in this work. Most of the calculations have been done
by the bulk and surface Green’s function techniques in the
framework of the Korringa-Kohn-Rostoker !KKR" method
in the atomic sphere approximation !ASA"28,29 combined

with the CPA for treating random alloys as described in Refs.
30 and 31. We have also used the full potential projector
augmented wave method !PAW"32,33 implemented in the Vi-
enna ab initio simulation package !VASP"34,35 for the total
energy calculations of ordered alloys. In the PAW calcula-
tions the required convergence has been reached for the en-
ergy cutoff of 313.5 eV and the integration over the Brillouin
zone performed by means of the modified tetrahedron
method with up to 4913 irreducible k points depending on
the size and symmetry of the system.

All the KKR-ASA calculations have been done in the lo-
cal density approximation !LDA"36 with the Perdew-Wang
parametrization for the exchange-correlation potential and
energy.37 The partial waves in the KKR-ASA calculations
have been expanded up to lmax=3 inside atomic spheres,
while the multipole moments of the electron density have
been determined up to lmax

M =6 for the multipole moment cor-
rection to the Madelung potential and energy. Let us state
again21 that it is impossible to get correct ordering energetics
in the KKR-ASA method without these multipole moment
contributions. At the same time, the correct account of these
contributions requires the knowledge of the states having
higher moments, therefore at least f states should be included
in the basis.21

The core states have been recalculated after each iteration.
The number of k points for the Brillouin zone integration,
performed by means of the Monkhorst-Pack scheme,38 has
been varied depending on the size and symmetry of the sys-
tem and type of calculations in order to achieve the needed
accuracy, and it has been especially high in the calculations
of the energy difference of the long period superstructures
!see below" and the long-range effective pair interactions.

The surface energy calculations have been done by em-
ploying a semi-infinite geometry with 9 and 12 surface layers
for the !111" and !001" surfaces, respectively. The calcula-
tions of the GPM interactions for the first two surface layers
in the case of alloy surfaces have been done by the bulk
Green’s function technique for slabs consisting of seven
atomic and five vacuum layers for the !111" surface and six
atomic and six vacuum layers for the !001" surface.

B. Screened Coulomb interactions

The electronic structure of random alloys have been ob-
tained in the density-functional-theory-single-site KKR-
ASA-CPA calculations with the on-site Coulomb screening
potential, vscr

i !Ref. 21" defined as

vscr
i = − e2!scr

qi

S
, !1"

where qi is the net charge of the atomic sphere of the ith
alloy component, S the Wigner-Seitz radius, and !scr
#!scr!R=0" the on-site screening constant. The latter has
been determined from the screening charge around an “im-
purity” in an alloy,20,21 which has been obtained in the lo-
cally self-consistent Green’s function !LSGF"
calculations39,40 of 864-atom supercells modeling random
A75B25 or A50B50 alloys.41–43
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be represented in the form of the multipole expansion,

Vscr!R "!#
L
Vscr
L !R ", !11"

where Vscr
L (R) is the L-component contribution to the SCI at

the distance R, which for a binary A1"cBc alloy on a Bravais
lattice may be expressed, as in paper I, as

Vscr
L !R"!

e2

2 $q2
QL!R!0 "%scr

L !R…
S

!
e2

4S $q2QL!R!0 " #
L!,R!&0

SL!00,L!!R!"QL!

#!R!"R". !12"

Here $q is the difference of the net charges in the atomic
sphere after and before the perturbation, i.e., the exchange of
the type of atom at site R, %scr

L (R) is a generalized screening
constant, SL ,L!(R!) are the canonical structure constants,48
QL(R!"R) are the normalized multipole moments of the
screening charge, and $qL!00!'qA("'qB( is the effective
charge transfer in the alloy.
Within the single-site mean-field considerations presented

in paper I, all the multipole moments on the alloy sites are
uncorrelated, the average value of QL(R!0) being either
very small or equal to zero, unless L!00, and thus the only
nonzero SCI is Vscr

L!00 , which, for instance, in the case of the
fcc underlying lattices can be written in the form !see paper
I"

Vscr!R "!$q2
e2

2
%scr!R "

S , !13"

where

%scr!R "!
1
2 #

L!,R!&0
SL!00,L!!R!"QL!!R!"R". !14"

The on-site term Vscr(R!0) is the energy of the electrostatic
interaction between the net charge of an alloy component
and its screening density or, as has been shown in paper I, it
is the screening Madelung energy of the random alloy. It is
easy to see that this energy is DFT-consistent with the corre-
sponding screening Madelung shift of the one-electron po-
tential !6". However, in contrast to the screening Madelung
potential which correctly reproduces the effective charge
transfer in random alloys, Vscr(R!0) underestimates the
corresponding Madelung energy in the ASA$M because of
the missing contribution from the multipole-multipole inter-
actions in the single-site mean-field approximation. In the
case of, for instance, a Ni50Pt50 random alloy this contribu-
tion is about "3 mRy/atom for the Wigner Seitz radius S
!2.8 a.u.
This means that if one wants a quantitatively accurate

value of the total energy of a random alloy in the SS-DFT-
CPA calculations consistent with the supercell ASA$M cal-
culations one needs to modify the definition of the Madelung
energy of the random alloy by introducing a fitting param-

eter. The simplest way to do so is to define the Madelung
energy of the random alloy as

EMad
rand!#

i
c iEi

scr , !15"

where ci is the concentration of the ith alloy component, and

Ei
scr!

e2

2 )qi
2 %scr!R!0 "

S , !16"

which means that in the case of a binary random alloy

EMad
rand!c!1"c ")Vscr!R!0 ". !17"

Here, ) is the renormalization coefficient which is approxi-
mately equal to 1.16 for most fcc and hcp transition-metal
random alloys. Thus Ei

scr and Vscr
i are no more DFT-

consistent *see Eq. !4"+.
As discussed above, this violation of general theory is a

consequence of the ASA$M, which on the other hand brings
the ordering energies of the much more efficient SS-DFT-
CPA approach into good quantitative agreement with the cor-
responding full-potential results. Although the difference be-
tween the multipole-multipole and monopole-multipole
results in Table II might not look so dramatic, the omission
of the multipole-multipole interactions in the ASA$M
Madelung energy has much more serious consequences in
the case of, for instance, surface energy anisotropy calcula-
tions, which cannot be reproduced even qualitatively without
this term.
Finally, we show that the CPA itself introduces relatively

small errors in the electronic structure calculations of a ran-
dom alloy. In Fig. 2 we compare the total density of states
!DOS" of a random Ni50Pt50 alloy and the local, Pt and Ni,
contributions obtained by two different methods, SS-KKR-
CPA and EC-LSGF. The SS-KKR-CPA calculations have

FIG. 2. The total and site-projected density of states in Ni50Pt50
obtained in the supercell EC-LSGF calculations and by the SS-
KKR-CPA method.
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