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have been recently reported by Uzdin et al.,18 showing the
destruction of SDWs for an H concentration higher than 50%
at the interface layer. On the other hand, a larger amount of
studies have been devoted to investigating the stability of the
SDW in the presence of extended defects, particularly the
Fe/Cr multilayers.19,20

Concerning the simplest structural defect, the vacancy
(Vac) experiments based on positron annihilation spectroscopy
(PAS) provided activation energy for self-diffusion in Cr (Q)
for the paramagnetic phase.21,22 Theoretically, vacancy forma-
tion energies in both AF and NM states have been estimated by
DFT calculations.9 But, an accurate prediction of the formation
and migration properties of vacancies corresponding to the
low-temperature (T ! TNéel) SDW state is still lacking.

In this work, we aim to investigate the properties of
vacancies and two representative substitutional impurities by
determining in particular, by means of DFT calculations,
whether the magnetism of Cr and point defects may influence
each other. Section II of this paper describes the calculation
methods. The formation and migration of vacancies in the
SDW state are presented in Secs. III A and III B, and
compared with those in the AF and NM states. Section III C
is devoted to addressing the properties and impacts of 3d
substitutional impurities in the SDW Cr, where Fe and Cu are
taken as prototypes of magnetic and nonmagnetic impurities.
Section III D details the magnetic and energetic properties of
an Fe dimer in Cr. Finally, we compare in Sec. III E different
interactions between the point defects (Vac, Fe, Cu) and the
SDW structure.

II. METHODOLOGY

The present ab initio calculations have been performed
within density functional theory as implemented in the SIESTA
code.23 This localized-basis-set DFT approach allows one
to deal efficiently with large supercells containing both
point defects and complex magnetic structures. Indeed, this
approach has been proven in particular to give reliable results
about energetics and detailed magnetic structure of SDW in
pure Cr,8 compared with more robust plane-wave codes within
the projector-augmented-wave (PAW)4 and very accurate all-
electron approaches.5 It has also been proven to satisfactorily
describe the energetics of point defects in transition metals.24,25

The calculations are spin polarized within the collinear
approximation. Spin-orbit coupling effects are not included;
thus, possible effects of the polarization state of SDW are also
neglected. All results are obtained using the generalized gradi-
ent approximation (GGA) exchange-correlation functional in
the Perdew-Burke-Ernzerhof (PBE) form.

Concerning other DFT approximations, core electrons are
replaced by nonlocal norm-conserving pseudopotentials while
valence electrons are described by linear combinations of
numerical pseudo–atomic orbitals. The pseudopotentials and
the basis sets for Cr and Fe atoms are the same as in Ref. 8;
those for Cu are the same as in Ref. 26. The accuracy of the
Cr, Fe, and Cu pseudopotentials and basis sets has been tested
on relevant energetic and magnetic properties, and shown to
agree satisfactorily with experimental and plane-wave DFT
values.8,26 The local magnetic moments of the atoms are
estimated using the Mulliken criterion.23

FIG. 1. (Color online) Schematic view of the different sites
chosen for point defect in the calculated SDW structure of Cr. Note
that µint and node sites are first-nearest neighbors.

Supercell calculations were performed to study defect
properties. Results concerning vacancies and impurities have
been obtained adopting 3a0 × 3a0 × 20a0 cells with 360
atoms, a0 being the lattice parameter of the cubic unit cell.
They contain either one period of 9 coherent SDWs along
the (001) direction or the same number of Cr atoms in an
AF or NM state. The choice of 20a0 for the SDW period
is to obtain a wave vector "q SDW = 0.95, similar to the low-
temperature experimental value.3 Shifted 4 × 4 × 1 k grids
and the Methfessel-Paxton broadening scheme with a 0.3 eV
width are used.

We have performed constant-pressure calculations; i.e., the
structures are optimized by relaxing both the atomic positions
and the shape and volume of the supercell.

To consider point defects in a SDW state of Cr, various
inequivalent formation sites need to be considered. In view
of the near-sinusoidal shape of SDW,3,8 we focus our study
on 3 representative sites: the node site of zero local magnetic
moment, its first neighbor with an intermediate local magnetic
moment of 0.5 µB in pure Cr (µint site), and a site of maximum
local magnetic moment (1.3 µB) in pure Cr (µmax site). They
are schematically represented in Fig. 1.

The migration barriers have been calculated at constant
volume using the drag method in a fashion similar to that in
Refs. 24,25,27: For a given reaction coordinate, the atomic
positions relative to the center of mass are constrained to
relax within the corresponding hyperplane perpendicular to
the vector connecting the initial and final positions.

We have estimated a precision error bar of 0.05 eV for
the most relevant energetic values obtained by this study,
i.e., the difference between vacancy formation energies (and
impurity solution energies) at various magnetic sites, the
vacancy migration energies, and the Fe-Fe binding energies
in Cr. This error bar accounts for the completeness of the basis
sets, the convergence of k-space sampling, and the electronic
and the structural relaxations within the present approach. It
is worth mentioning that the precision error of such energy
differences is generally smaller than that of the formation and
solution energies, as systematic errors can be canceled for the
former.

III. RESULTS AND DISCUSSION

A. Vacancy formation in SDW Cr

Vacancies are the simplest structural defects, often present
in real materials. Physical magnitudes such as their formation
and migration enthalpies should be accurately determined
in order to gain insight into, e.g., self-diffusion, impurity
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Cr ground state magnetic structure:
antiferromagnetic spin density wave 



Magnetization density (collinear): m(r) = ρ↑(r) − ρ↓(r)

Magnetic density is quite strongly localized on atoms



S. Sharma, PRL 2007

m(r) =
!
σαβnαβ (r)

αβ
∑ magnetic density

Crystalline and magnetic structure of Mn 
(D.Hobbs, et al. PRB 2003)

m(R) = m(r)d
SR
∫ rLocal atomic 

magnetic moment



T = 0 K: DFT (LSDA or GGA) works fine for 3d metals 

If the lattice constant experimental one…
and if GGA-PW functional is used. 

GGA-PBE slightly overestimates magnetic 
moments and probably magnetic energy, 
which is ~m2 (in the case of Fe the 
difference is about 30 meV (360 K).



Magnetism in DFT at finite T
Although the origin of magnetism is a spin of an electron, i.e. magnetism almost 
totally related to electronic structure, it is practically not included in finite T DFT 
(Mermin, 1965). 

This means that it should be modelled separately.
This can be done in two ways:
1) Using classical Heisenberg Hamiltonian, which can be used in statistical 
simulations:

 
Hmag = − Jij

!
σ i
!
σ j +…

ij
∑    i and j  are sites;  

!
σ i  is the unit vector in the direction of m(Ri )

2) Some specific configuration of atomic magnetic moments modelling the given 
magnetic state can be used in DFT calculations.
3) Do something else…. or… just DMFT calculations…



Spin-spin correlation function for the p-th coordination 
shell:

ξp =
1
N

eie j
R j⊂p
∑

Ideal paramagnetic state corresponds to T⇾∞  

for which ξp
IP = 0  for all p

That is, the directions of the spins at different sites are pointing randomly to different directions. 

However, in the absence of the spin-orbit interaction, this state can be modeled exactly by 
disordered local spin-up and spin-down magnetic moments (DLM) at different sites:

A0.5
↑ A0.5

↓

DLM model represents a random alloy of “spin-up” and “spin-down” atoms, whose electronic 
structure and energy can be obtained by methods for random alloys.



Advantage of DLM modeling with CPA 

homogeneous representation of the PM state, 
which is very important especially for Fe and its alloys due to very strongly 
coupling between local structure (atomic configuration) and local spin state. 

such a representation is especially advantageous for multicomponent and 
structurally inhomogeneous systems.

the electronic structure is OK: electronic state are NOT Bloch states: they 
are exponentially decaying in space (have finite life time)



Itinerant vs localized magnetism

Unfortunately, DLM is a good model of paramagnetic state only in the case of 
localized magnetism, i.e. when magnitudes of magnetic moments do not 
fluctuate and little dependent on the magnetic state (which is, for instance, 
the case of Cu-rich CuMn alloys). 

Most 3d-metals and alloys do not belong here: they are usually itinerant (or 
even weak itinerant) magnets. At finite temperatures, not only the direction of 
magnetic moments fluctuates (transverse fluctuations) in these systems, but 
the magnitude of magnetic moments also fluctuates too (”longitudinal spin 
fluctuations”).

The reason for that is clear if one checks how the energy of the DLM state 
depends on the magnitude of magnetic moment. 



From Moriya (1985)

From DFT:

Fe
Ni
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The energy of magnetic state in bcc Fe and fcc Ni

Longitudinal spin fluctuation 
energy



Longitudinal and transverse degrees of freedom
mi = mxi

2 +myi
2 +mzi

2( )12Local magnetic moment in DFT:

LSF energy in Co, Ni and Fe

This simple connection, however, does not give a clue 
how these degree of freedom are energetically 
distributed and coupled at high temperature (which is, 
for instance, can be obtained in DMFT calculations).

One can only argue, that in the case of “localized” 
magnetism (like bcc Fe), the transverse fluctuations are 
much more energetically favorable than longitudinal, 
which imposes a certain restrictions on mx my and mz.

Vice versa, for weak itinerant magnets (Ni, Co), the 
transverse fluctuations are the result of the 
fluctuations of the  mx my and mz components: full 
coupling mode.



Simple model of LSF (for using in DFT)

Z L = exp −E(m) T[ ]dm∫

Z I = m2 exp −E(m) T[ ]dm∫

In the case of Fe (localized limit)

In the case of Ni, Co (itinerant limit)

 E(m) = am
2 + bm4 +…

Leaving only quadratic term, one gets:

S I = 3ln( m )

SL = ln( m )

 
m = 1

Z
m!+1 exp −E(m) T[ ]dm∫   ;   ! = 2 (I) or 0 (L)



Paramagnetic susceptibility of Fe, Ni, and Co 
from LSF-MC simulations (unpublished)

bcc Fe fcc Cofcc Ni

“localized” limit Weak itinerant limit



LSF induced magnetic moment in austinite:
fcc Fe-20Cr-20Ni alloy

LSF energy (CPA calculations) Magnetic moment of Ni and Cr
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Thermal lattice expansion in Ni: effect of 
longitudinal spin fluctuations 



Longitudinal spin fluctuations (LSF)

LSF can strongly affect some properties of 3d-metal alloys. They are responsible for

1) relatively large lattice constant of austenitic steels (cannot be reproduced in 
DFT calculations without their account);

2) anti-Invar effect in some Fe-Mn alloys (unusually large thermal expansion in 
certain range of temperatures);

3) they provide substantial contribution to enthalpies and free energies in some 
alloys; properties;

4) they can strongly affect elastic and mechanical properties of alloys.



LSF in DFT
It should be done in the DLM-CPA calculations (one-shot calculations in Hamiltonian 
formalism probably can be done using SWM, but it has never been properly tested).

The average magnetic moment can be obtained in a single self-consistent calculations 
using Pavel Korzhvyi’s trick (Phys. Rev. B96, 224406 (2017)):

V
↑ ↓( )
LSF =

δ −TS( )
δm

= + −( ) T
αm

  ;   α=  1 (L) or 3 (I)



DLM and LSF-DLM calculations in GreenALM

mom <float> 0.0
Initial spin splitting 
or magnetic moment 
(lsm_mode = fxm)

lsm_mode <string> none
Local spin moment 
mode: none, fxm, dl
m, lsf

lsm_params <integer> 3 LSF effective 
dimension: 1, 2, or 3

lsm_mode = dlm, lsf

[Alloy]


