Magnetism of 3d metals and
alloys with GreenALM



Magnetism of d-metals
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Magnetic structures

Spin-spiral structure Cr ground state magnetic structure:
_ antiferromagnetic spin density wave
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Magnetic density in 3d metals

Magnetization density (collinear): m(r) = pT (r)— pi (r)

Internal Magnetization Density Distribution of Iron and Nickel
by the Maximum Entropy Method
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Fig. 11. Positive part of magnetization-density distribution of
iron in the (110) plane, calculated with P-MEM code. Contours
are ploted from 0.1 in steps of 0.1.
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Magnetic density is quite strongly localized on atoms



Local atomic magnetic moment

m(r) = Ea'aﬁ”aﬁ (r)  magnetic density Local atomic m(R) = J. m(r)dr
b magnetic moment Sk
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FIG. 1 (color). Fully noncollinear magnetization density and B
field obtained using the LSDA and exchange-only EXX func-
tionals for an unsupported Cr monolayer in Néel state. Arrows

indicate the direction, and information about the magnitude (in Crystalline and magnetic structure of Mn

atomic units) is given in the color bar.
(D.Hobbs, et al. PRB 2003)
S. Sharma, PRL 2007
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T = 0 K: DFT (LSDA or GGA) works fine for 3d metals

Fe
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If the lattice constant experimental one...
and if GGA-PW functional is used.

GGA-PBE slightly overestimates magnetic
moments and probably magnetic energy,
which is *m2(in the case of Fe the
difference is about 30 meV (360 K).



Magnetism in DFT at finite T

Although the origin of magnetism is a spin of an electron, i.e. magnetism almost
totally related to electronic structure, it is practically not included in finite T DFT
(Mermin, 1965).

This means that it should be modelled separately.
This can be done in two ways:
1) Using classical Heisenberg Hamiltonian, which can be used in statistical

simulations:

H,. = —z J,00;+... iandj aresites; 0, is the unit vector in the direction of m(R,)
i

2) Some specific configuration of atomic magnetic moments modelling the given
magnetic state can be used in DFT calculations.
3) Do something else.... or... just DMFT calculations...



Paramagnetic state: disordered local moments (DLM)
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That is, the directions of the spins at different sites are pointing randomly to different directions.

However, in the absence of the spin-orbit interaction, this state can be modeled exactly by
disordered local spin-up and spin-down magnetic moments (DLM) at different sites:
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DLM model represents a random alloy of “spin-up” and “‘spin-down” atoms, whose electronic
structure and enerev can be obtained bv methods for random allovs.



Advantage of DLM modeling with CPA

homogeneous representation of the PM state,
which is very important especially for Fe and its alloys due to very strongly
coupling between local structure (atomic configuration) and local spin state.

such a representation is especially advantageous for multicomponent and
structurally inhomogeneous systems.

the electronic structure is OK: electronic state are NOT Bloch states: they
are exponentially decaying in space (have finite life time)



Itinerant vs localized magnetism

Unfortunately, DLM is a good model of paramagnetic state only in the case of
localized magnetism, i.e. when magnitudes of magnetic moments do not
fluctuate and little dependent on the magnetic state (which is, for instance,
the case of Cu-rich CuMn alloys).

Most 3d-metals and alloys do not belong here: they are usually itinerant (or
even weak itinerant) magnets. At finite temperatures, not only the direction of
magnetic moments fluctuates (transverse fluctuations) in these systems, but
the magnitude of magnetic moments also fluctuates too (“longitudinal spin
fluctuations”).

The reason for that is clear if one checks how the energy of the DLM state
depends on the magnitude of magnetic moment.



The energy of magnetic state in bcc Fe and fcc Ni
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Longitudinal and transverse degrees of freedom

: : ¥
Local magnetic moment in DFT: m, = (mi + myzl. + mzzl) ’

LSF energy in Co, Ni and Fe

This simple connection, however, does not give a clue
how these degree of freedom are energetically
distributed and coupled at high temperature (which is,
for instance, can be obtained in DMFT calculations).

One can only argue, that in the case of “localized”
magnetism (like bcc Fe), the transverse fluctuations are
much more energetically favorable than longitudinal,
which imposes a certain restrictions on m, m, and m,.

Vice versa, for weak itinerant magnets (Ni, Co), the
transverse fluctuations are the result of the
fluctuations of the m, m, and m,components: full
coupling mode.



Simple model of LSF (for using in DFT)

In the case of Fe (localized limit) Z" = J-exp[—E(m)/T]dm

In the case of Ni, Co (itinerant limit) 7' = J-m2 exp[—E(m)/T]dm
E(m)=am”+bm* +...

Leaving only quadratic term, one gets: SL — ]n(<m>)
S'=3In((m))

(m)= %jml exp|—E(m)/T |dm ; o=2@or0 (L)
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Paramagnetic susceptibility of Fe, Ni, and Co
from LSF-MC simulations (unpublished)
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LSF induced magnetic moment in austinite:
fcc Fe-20Cr-20Ni alloy

LSF energy (CPA calculations) Magnetic moment of Ni and Cr
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Thermal lattice expansion in Ni: effect of
longitudinal spin fluctuations
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Longitudinal spin fluctuations (LSF)

LSF can strongly affect some properties of 3d-metal alloys. They are responsible for

1) relatively large lattice constant of austenitic steels (cannot be reproduced in
DFT calculations without their account);

2) anti-Invar effect in some Fe-Mn alloys (unusually large thermal expansion in
certain range of temperatures);

3) they provide substantial contribution to enthalpies and free energies in some
alloys; properties;

4) they can strongly affect elastic and mechanical properties of alloys.



LSF in DFT

It should be done in the DLM-CPA calculations (one-shot calculations in Hamiltonian
formalism probably can be done using SWM, but it has never been properly tested).

The average magnetic moment can be obtained in a single self-consistent calculations
using Pavel Korzhvyi’s trick (Phys. Rev. B96, 224406 (2017)):

o 5(-Ts T
v =%=+(—)a—m . o= 1(L)or3(



DLM and LSF-DLM calculations in GreenALM

mom

Ism_mode

Ism_params

[Alloy]
<float> 0.0
<string> none
<integer> 3

Ism_mode = dIim, Isf

Initial spin splitting
or magnetic moment
(Ism_mode = fxm)

Local spin moment
mode: none, fxm, dI
m, Isf

LSF effective
dimension: 1, 2, or 3



