Defects in metals and alloys at finite temperatures from DFT

Blazej Grabowski

Department of Materials Design Institute for Materials Science (IMW) University of Stuttgart, Germany

ERC CoG project Materials 4.0

- defects are always there
- defects modify material properties
- need to control defects
- need to understand defects

Defects:

point defects (vacancies)

stacking fault energies

anti-phase boundaries

surfaces

our most favorite ab initio simulations

(mine: periodic, plane-wave density functional theory, mostly VASP)

- typical experiments at **finite** temperatures
- usual applications at **finite** temperatures
- processing often at high temperatures (specifically metals)
- need extension from 0K to finite T DFT

energy → Helmholtz (free) energy Gibbs energy (pressure included)

- → largest contribution from (quasiharmonic) vibrations
- → BUT: other contributions important for phase stability, thermodynamic properties

- → largest contribution from (quasiharmonic) vibrations
- → BUT: other contributions important for phase stability, thermodynamic properties

Quasiharmonic vibrations

Quasiharmonic approximation

e.g.: Wallace, Thermodynamics of Crystals (Dover, 1998).

Combination (DFT + quasiharmonic approximation) since ≈ 1989: Ref.: Biernacki und Scheffler, *PRL* **63**, 290 (1989).

$$F^{qh}(T,V) = E_{T=0K}(V) + \sum_{q}^{BZ} \sum_{i}^{3} \left[\frac{1}{2} \hbar \omega_{q,i}(V) + k_{B}T \ln \left[1 - \exp \left(-\frac{\hbar \omega_{q,i}(V)}{k_{B}T} \right) \right] \right]$$

Phonons for fcc metals

Phonons for fcc metals

University of Stuttgart Institute of Materials Science

Electronic excitations

Mermin, Phys. Rev. 137, A1441 (1965)

$$F^{\text{el}} = k_{\text{B}}T \int N(E) \left[f \ln f + (1 - f) \ln(1 - f) \right] dE$$

ideal entropy

Electronic excitations, wide range study

Trends in the periodic table

Phys. Rev. B 95 (2017) 165126

Defects in metals and alloys at finite temperatures from DFT

Electronic excitations, wide range study

important for phase stabilities

Phys. Rev. B 95 (2017) 165126

Defects in metals and alloys at finite temperatures from DFT

University of Stuttgart Institute of Materials Science

 \rightarrow Very strong broadening

 \rightarrow Thermal disorder

 \rightarrow Localization

Example for tungsten

Phys. Rev. B 95 (2017) 165126

Impact on electronic free energies

Phys. Rev. B 95 (2017) 165126

Defects in metals and alloys at finite temperatures from DFT

Blazej Grabowski

Anharmonic vibrations

Example: Heat capacity of TiN

- → anharmonic (phononphonon interaction) contribution can be very important
- \rightarrow many such examples
- → anharmonicity cannot be neglected in general!

Reference: Forslund, Grabowski et al., PHYSICAL REVIEW B 103, 195428 (2021)

Heat capacity of silver

Phys. Rev. Lett. 114 (2015) 195901

Wide range study of heat capacities

Defects in metals and alloys at finite temperatures from DFT

Phys. Rev. Lett. 114 (2015) 195901

Phys. Rev. Lett. 114 (2015) 195901

Magnetic excitations

Magnetic excitations (dreaming of what could be)

Example: Heat capacity for iron

Defects in metals and alloys at finite temperatures from DFT

- mean-field approximation if well above Curie temperature
- or empirical approach with DFT/experimental input

$$C^{\text{mag}}(T) = \begin{cases} k_f(T/T_C) \exp[-4(1 - T/T_C)] & T < T_C \\ k_p(T/T_C) \exp[8p(1 - T/T_C)] & T > T_C \end{cases}$$

$$S^{\text{mag}} = k_B \ln(m+1).$$

Defects in metals and alloys at finite temperatures from DFT

University of Stuttgart Institute of Materials Science

University of Stuttgart Institute of Materials Science

Back to defects

"master" equation: ox energy volume okeneroywohum defect Free energy (meV/atom) Free energy (meV/atom) defect perfect formation -500 -500 -1000 -1000 free energy Volume Volume 500 (Å³/atom) 500 (Å³/atom) 1000 1000 Temperature (K) Temperature (K) 1500 1500 T_{melt} (exp) Tmelt (exp)

- \rightarrow once you have anharmonic vibrations, do not care much about defects
- \rightarrow but supercell size convergence can be tough (error scales with # atoms)
- \rightarrow and sometimes special care necessary, e.g.:
 - stacking plane migration
 - vacancy migration

Stacking plane migration

ANNNI = axial-next-nearest- neighbor-Ising

Example: hcp Ni for ANNNI model (SFE = hcp – fcc)

Phys. Rev. B 98 (2018) 224106

- \rightarrow MD needs to be monitored carefully
- \rightarrow here finite size effects play a role
- \rightarrow supercell size needs to be large enough

Most recent method for finite temperature DFT

Methodology: Direct upsamling

(to be published)

- 1. Run low accuracy DFT molecular dynamics
- 2. Fit preliminary moment tensor potential (MTP)
- 3. Optimize MTP on high accuracy DFT snapshots
- 4. TILD from effective harmonic to MTP for F(V,T)
- 5. Upsampling from MTP to DFT on snapshots for F(V,T)
- 6. Parametrize $F(V,T) \rightarrow Legendre transform to G(P,T)$
- 7. Extract thermodynamic properties (e.g. heat capacity, expansion coefficient, bulk modulus)

TILD = thermodynamic integration using Langevin dynamics

Moment tensor potentials (MTPs)

University of Stuttgart Institute of Materials Science

Shapeev, Multiscale Modeling & Simulation 14, 1153 (2016)

Descriptors of atomic environments:

- Moments of inertia of surrounding atoms
- They satisfy the needed symmetries (rotation, permutation, translation, ...)
- Math:

> Moments: $M_{n,m}(\boldsymbol{r_{i}}) = \sum_{j} f_n(|r_{ij}|) r_{ij} \otimes \cdots \otimes r_{ij}$

m times

 \succ Energy: $E = \sum_{\alpha} \theta_{\alpha} B_{\alpha}$

Active learning via D-optimality

included: anharmonic vibrations, electronic excitations, coupling, magnetism (mean field, empirical)

Defects: Results

Arrhenius or not Arrhenius

Blazej Grabowski, Department of Material Design

Phys. Rev. X 4 (2014) 011018

Arrhenius or not Arrhenius

Phys. Rev. X 4 (2014) 011018

Physical insight

University of Stuttgart Institute of Materials Science

Nearest neighbor distribution at finite temperatures

→ Localized interactions around vacancy

Vacancies in Ni

Blazej Grabowski, Department of Material Design

Phys. Rev. B 97 (2018) 214106

Stacking fault energy for Nickel

Stacking fault energy for Nickel

Ni₃Al APB important for Ni-superalloys (to be published)

Surface free energy of TiN (very important for coatings)

 \rightarrow high accuracy surface properties possible

Defects in metals and alloys at finite temperatures from DFT

Blazej Grabowski

Alloys

Unary system (single element)

 \rightarrow single defect formation energy

Chemically complex system High entropy alloy VNbMoTaW

→ MANY defect formation energies (distribution)
 → highly challenging already at 0K

Defects in metals and alloys at finite temperatures from DFT

Vacancy energetics from unaries to alloys

Al

C Hf

Sc Sc

TiZr

[-100]

Defects in metals and alloys at finite temperatu

Configurational vacancy excitations

Equilibrium vacancy concentration

Ref: Xi Zhang, B. Grabowski (under review)

Future challenges

Summary

- key: free energy surface, for bulk & defects
- various excitations (qh, ah, el, mag, coupling)
- explicit anharmonic vibrations crucial
- efficient methodology: direct upsampling
- utilizes machine learning potentials
- generally good agreement with experiment
- predictions possible, understanding possible

Defects in metals and alloys at finite temperatures from DFT

blazej.grabowski@imw.uni-stuttgart.de

Blazej Grabowski