

Virtual Psi-k GreenALM Hands-on Tutorial 2021

Introduction to thermo-mechanical properties

Jürgen Spitaler

1) Materials Center Leoben Forschung GmbH, Austria

13.10.2021

Free energy

Groundstate energy E₀ from: DFT groundstate calculation $F = (E_0 + F_{vib} + F_{conf} + F_{mag} + F_{el} + F_{defects} + \dots$

- F_{conf}: No volume dependence
- F_{el} : Typically small influence on curvature of F_{vib} (\rightarrow Talk by Pavel Korzhavyi)
- $F_{defects}$: Matters mostly at high temperatures (\rightarrow Talk by Blazej Grabowki)

Low temperatures (T< $T_{melt}/2$), non-magnetic solid:

F_{vib} is leading contribution

Vibrational free energy **F**_{vib} e.g. from

- Ab-initio MD a)
- b) Quasiharmonic approximation (QHA): Explicit phonon calculations, Debye Grüneisen model

https://doi.org/10.1103/PhysRevB.95.165126

QHA with explicit phonon calculations (e.g. phonopy + VASP....)

- \succ Finite displacements and forces \rightarrow dynamical matrix
- Eigenvalues of dynamical matrix = phonon frequencies
- \succ Intergration over phonon DOS \rightarrow F_{vib}

Debye model

- Only one phonon branch: Averaged between longitudinal and transversal acoustic phonons
- Linear dispersion

• Parabolic DOS

Bodlos et al. 2021, https://doi.org/10.1103/PhysRevMaterials.5.043601

- The Debye-Grüneisen approach is very powerful due to its computational efficiency and simplicity in terms of ٠ ingredients
- It works very nicely for a wide range of materials (as shown in the talk by P. Korzhavyi in the morning) ٠
- It very versatile: Can be used with any method delivering total energy (at OK) as function of volume ٠

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{9}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[D_3 \left(\frac{\Theta_D}{T} \right) - 3 \ln(1 - e^{-\frac{\Theta_D}{T}}) \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - k_B T \left[\frac{\Theta_D}{T} \right]$$

$$F_{vib} = \frac{1}{8} k_B \Theta_D - \frac{1}{8}$$

Ŀ

lattice parameter in Å

- The volumetric coefficient of thermal expansion is defined as $\alpha = \frac{1}{V} \frac{\partial V}{\partial T}$
- It is related to c_v (the specific heat at constant volume) and the bulk modulus as $\alpha = \frac{\gamma c_v}{B}$ (see e.g. Ashcroft-Mermin)

 $1 \partial V$

- VASP + phonopy, 128-atom supercell
- For each volume and concentration: 20-40 displacements per supercell
- → Total of ~ 1000 calculations of 128-atom supercells

For each volume and concentration: 7 calculations

→ Total of ~ 200 calculations of 16-atom supercells

Bodlos et al. 2021 https://doi.org/10.1103/PhysRevMaterials.5.043601

What's going on with the Debye-Grünesen model In W-Re?

Dengg et al. 2017 <u>https://doi.org/10.1103/PhysRevB.96.035148</u>

Thermal expansion via QHA vs Debye ... example of W-Re

Dengg et al. 2017 <u>https://doi.org/10.1103/PhysRevB.96.035148</u>

Conclusions

- Thermal expansion is closely related to the phonons in a system
- The quasi-harmonic approximation is the *"*work-horse" of calculating thermal expansion
- Debye-Grüneisen DG) model delivers vibrational free energy as function of volume just based on the equation of states
- DG model is versatile and can be combined with existing CPA implementations \rightarrow perfect for random alloys
- DG model gives a very useful approximation in many cases
- Be careful in systems with phonon anomalies away from the Γ point