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Introduction

 High-performance materials require intelligent materials design

https://www.machinedesign.com

https://www.autosteel.com

https://phys.org/

Mobility
Energy

Tooling Electronics
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Approaches for materials design

ICME: 

Connect physics - based

models at various length scales

(e.g., atomistic simulation,

dislocation modeling,

thermodynamic continuum

modeling) to predictively model

materials

Material informatics:

Understand materials using

data and algorithms with

machine learning as a key tool

Joanne Hill , Gregory Mulholland , 

Kristin Persson, Ram Seshadri , 

Chris Wolverton , and Bryce 

Meredig, MRS BULLETIN, 41, 2016, 

399
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Workflow: Lookman loop

 Loop through data generation, 
data learning, prediction of best 
material/device and validation.

 Learn data as they are created.

 Move efficiently through complex 
design spaces.

 Obtain better materials with well-
defined workflow

DOI:10.1038/s41598-018-21936-3
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Implementation of accelerated materials design loop at MCL

Elements of the accelerated materials 
design framework at MCL

Automated access to material databases 
and literature

AI based tools for materials design loop … 
next material to be synthesized

Synthesis

Experimental characterization

Computational physics based tools:
GreenALM, VASP, effective Hamiltonians, 
SEGROcalc, Thermocalc, FEM solvers, 

Pre-phase: Desgin space definition, 
preliminary tests
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Example Perovskite

 Typical chemical formula ABO3, e.g. BaTiO3

 Huge design space: combinatorial bottleneck.

 Objective: Ferroelectric perovskites with large 

piezoelectric and electromechanical coupling 

coefficients

DOI: 10.1038/s41467-018-03821-9

60.000 combinations possible, 

not even 1% explored

(A1-x-yA’xA’’y)(B1-j-kB’jB’’k)O3

DOI: 10.1038/s41467-018-03821-9

Balachandran 2016: 

Search for materíals with high 

ferroelectric Curie temperature

Where

A (2+) = Ba, Ca, Sr

A’ (3+) = Bi, Ce, Dy, Er, Eu, Gd, La, Nd, Pr, Sm

A‘‘ (1+) = Ag, K, Li, Na

B (4+) = Ce, Hf, Os, Pd, Re, Rh, Sn, Ti, V, Zr

B’ (2+ or 3+) = Co, Fe. Ga, Mg, Mn, Sb, Tb, Yb, Zn

B’’ (5+ or 6+) = Mo, Nb, Sb, Ta, W
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Perovskite ferroelectrics with high energy density

Perovskite structure

Cooperative long-range 

cation displacement

Ferroelectrics
Disruption of long-range 

correlation

Relaxors
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Perovskite: Integrated Computational Materials Design

 Atomic-level characterization Raman + DFT

 High-throughput synthesis (spin coating)

 Characterization with Raman and XRD

 DFT + SpheRaE: Prediction of spectra for

different defects/local defect arrangement

1) Popov et al 2020, https://doi.org/10.1038/s41524-020-00395-3

Atomic level characterization
of functionally active part

Example of Ba(NbTi)O3 and Ba(ZrTi)O3

https://doi.org/10.1038/s41524-020-00395-3
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Perovskite: Atomic level characterization

1) Veerapandiyan et a, submitted to Advanced Electronic Materials

Ba(NbTi)O3
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Perovskite: Atomic level characterization

 Impact of Zr and Nb on local dipole moments

1) Veerapandiyan et a, submitted to Advanced Electronic Materials

Local dipole changes induced by doping BT 
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Perovskites: Materials design workflows

 High-throughput synthesis (sol-gel deposition)

 Characterization

 XRD, Raman, HR-TEM

 Atomistic modeling: DFT

 Physical modeling: DFT based effective Hamiltonians

 Machine learning

Perovskite-based materials with 

exceptional energy storage capability
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Adaptive design of alloy materials

Computational

materials design

Materials data

Regression

Next design

Virtual experiment

Adaptive learning loop
GreenALM or 

SEGROcalc
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Adaptive learning workflow in practice

General optimization workflow
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Use case: Segregation at grain boundaries SEGROcalc

Task: Find heat treatment that increases GB cohesion for Fe containing C, B, and N as impurities.

 Motivation: 

 Impurities segregate to GBs. 

 Enrichment of impurities at GBs -> cohesive properities of GB on macroscopic length scale.

Daniel Scheiber and Lorenz Romaner
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Use case: SEGROcalc

TH

T

t
tH

r

tP

Features to optimize: 

• cooling rate 

• holding temperature

total process time is fixed to 1h

Daniel Scheiber and Lorenz Romaner
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Use case: Solid solution strengthening

Strengthening model

Δτ = 𝑓(𝐶44, 𝐶
′, 𝐵,

𝜕𝑉𝐴𝑙𝑙𝑜𝑦
𝜕𝑐𝑖

; 𝑇)𝐶44,𝐶′,𝐵

Finite temperature effects
(phononic, magnetic, electronic)

Semiempirical 𝐸𝑋𝐶 correction

Green‘s function DFT

Target quantity: Δ𝜏0 Critical resolved shear stress

𝜕𝑉𝑎𝑙𝑙𝑜𝑦

𝜕𝑐(𝑛)

Input: Alloy {𝑐 𝑛 , 𝑐 𝑛+1 , … , 𝑐 𝑚 }

High-throughput
framework

Machine learning

Workflow gives the critical resolved shear stress (CRSS) contribution due to solute solution strengthening

Franco Moitzi
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Use case: Solid solution strengthening

Prediction of Δ𝜏0

Uncertainty
Target

Franco Moitzi
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Conclusions and outlook

• Adaptive learning is a universal approach to materials design

• Both experiment and ab initio data can be used on equal footing

• Lightweight techniques such as CPA (for alloys) and effective 
Hamiltonians (for perovskites) offer a lot of opportunities
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