

Virtual Psi-k GreenALM Hands-on Tutorial 2021

Accelerated material design based on

DFT, experiment and machine learning

Oleg Peil and Jürgen Spitaler¹

Materials Center Leoben Forschung GmbH, Austria

14.10.2021

Introduction

 \rightarrow High-performance materials require intelligent materials design

Mobility

Energy

Tooling

Electronics

ICME:

Connect physics - based models at various length scales (e.g., atomistic simulation, dislocation modeling, thermodynamic continuum modeling) to predictively model materials

Material informatics:

Understand materials using data and algorithms with machine learning as a key tool

Joanne Hill, Gregory Mulholland, Kristin Persson, Ram Seshadri, Chris Wolverton, and Bryce Meredig, MRS BULLETIN, 41, 2016, 399

- Loop through data generation, data learning, prediction of best material/device and validation.
- Learn data as they are created.
- Move efficiently through complex design spaces.
- Obtain better materials with welldefined workflow

DOI:10.1038/s41598-018-21936-3

Implementation of accelerated materials design loop at MCL

Example Perovskite

DOI: 10.1038/s41467-018-03821-9

Ferroelectrics

Cooperative long-range cation displacement

Relaxors

Disruption of long-range correlation

Perovskite: Atomic level characterization

1) Veerapandiyan et a, submitted to Advanced Electronic Materials

□ Impact of Zr and Nb on local dipole moments

Characterization

Machine learning

□ XRD, Raman, HR-TEM

□ Atomistic modeling: DFT

Perovskite-based materials with exceptional energy storage capability

Adaptive learning workflow in practice

Task: Find heat treatment that increases GB cohesion for Fe containing C, B, and N as impurities.

- Motivation:
 - Impurities segregate to GBs.

Enrichment of impurities at GBs -> cohesive properities of GB on macroscopic length scale.

900 cooling rate 800 holding temperature • 700

1000

Features to optimize:

-0.24

-0.25

Use case: Solid solution strengthening

Franco Moitzi

Workflow gives the critical resolved shear stress (CRSS) contribution due to solute solution strengthening

Use case: Solid solution strengthening

Franco Moitzi

m

- Adaptive learning is a universal approach to materials design
- Both experiment and ab initio data can be used on equal footing
- Lightweight techniques such as CPA (for alloys) and effective Hamiltonians (for perovskites) offer a lot of opportunities

M. Deluca^{*,1}, V. K. Veerapandiyan¹, J. Sanz Mateo¹, F. Mayer¹, M. Popov¹, J. Rosalie², D. Kiener², P. B. Groszewicz³, G. Canu⁴, V. Buscaglia⁴, J. Hlinka,⁵ M. Pasciak⁵, <u>J. Spitaler</u>

- 1. Materials Center Leoben Forschung GmbH, Leoben (Austria)
- 2. Chair of Material Physics, Montanuniversität Leoben, Leoben (Austria)
- 3. Technical University Darmstadt, Faculty of Chemistry, Darmstadt (Germany)
- 4. National Research Council of Italy, Institute of Condensed Matter Chemistry and Technologies
- for Energy, Genoa (Italy)
- 5. Czech academy of sciences, Prague

COMET center for excellent technologies for Integrated Computational Materials, Processes and Product Engineering