

Multi-scale simulation of mechanical properties and solid solution strengthening

Francesco Maresca

University of Groningen, The Netherlands

f.maresca@rug.nl

Virtual Psi-k GreenALM Hands-on Tutorial 2021 – MCL Leoben (Austria)

Computational Mechanical and Materials Engineering

Multiscale Mechanics Modelling a brief overview

Francesco Maresca

University of Groningen, The Netherlands

f.maresca@rug.nl

Virtual Psi-k GreenALM Hands-on Tutorial 2021 – MCL Leoben (Austria)

Computational Mechanical and Materials Engineering

Materials: multi-scale and complex

Challenges for *understanding* and *modelling*:

- 1. Intrinsically multi-scale
- 2. All scales important (in general)
- 3. Complexity gives *emergent* macroscopic properties

Multiscale Mechanics Modelling \ Intro – F. Maresca (U. Groningen)

Materials: multi-scale and complex

Atomistic/Nanoscale

(Å to few nm)

Challenges for understanding and modelling:

- Intrinsically multi-scale 1.
- **All scales important (in general)** 2.

Mavrhofer et al. (2006)

Dislocations

3. **Complexity** gives *emergent* macroscopic properties

Nano- and Microstructures

Multiscale Mechanics Modelling \ Intro – F. Maresca (U. Groningen)

Interfaces

Multi-scale modelling

Multiscale Mechanics Modelling \ Intro – F. Maresca (U. Groningen)

Macroscale modelling

Solid solution strengthening

Francesco Maresca

University of Groningen, The Netherlands

f.maresca@rug.nl

Virtual Psi-k GreenALM Hands-on Tutorial 2021 – MCL Leoben (Austria)

Computational Mechanical and Materials Engineering

Solid solution strengthening in random alloys

Motivation 1: Large strengthening observed compared with elemental metals. Why?

Solid solution strengthening – F. Maresca (U. Groningen)

Senkov, Wilks, Scott, Miracle (2011) Intermetallics 19, 698 Maresca, Curtin (2020) Acta Mater 182, 235

Solid solution strengthening in random alloys

Motivation 2: Immense compositional space, trial-and-error unfeasible. **Predictive model?**

High Entropy Alloys (HEAs) [Multi Principal Element Alloys, MPEAs] [Complex Concentrated Alloys, CCAs]

Senkov, Miracle (2017) Acta Mater 122, 448

Yeh et al. (2004) Adv Eng Mater 6, 299 Solid solutions favored by config. entropy over brittle intermetallics $\Delta S_{\rm conf} \sim R \ln N$ R gas constant, N: # of elements [Neglects formation enthalpy, other entropy contributions]

 $\mathcal{O}(40)$ metals (no toxic/radioactive/rare)

 $\rightarrow \sim 10^{78}$ combinations (Cantor 2014 Entropy 16, 4749)

>> Avogadro's number! $(6.022 \cdot 10^{23})$

Solid solution strengthening – F. Maresca (U. Groningen)

N component alloy

 c_n concentration of the *n*-th element $(\sum_{n=1,N} c_n = 1)$

Dislocation exists in homogeneous, "average" alloy

Average alloy effective matrix with average properties of true random alloy, e.g.:

- 1. lattice parameter
- 2. elastic constants
- 3. generalized stacking fault energy

Leyson, Hector, Curtin (2012) Acta Mater 60, 3873 Varvenne, Luque, Curtin (2016) Acta Mater 118, 164

Solid solution strengthening – F. Maresca (U. Groningen)

*Recent review of solute strengthening theories: Varvenne, Leyson, Ghazisaeidi, Curtin (2017) Acta Mater 124, 660

solute n-dislocation interaction

in Embedded Atom Method (EAM) context: Varvenne, Luque, Nöhring, Curtin (2016) PRB 93, 104201

 $\Delta U_{tot}(\zeta, w)$ total energy change of dislocation segment ζ gliding by w

Solid solution strengthening – F. Maresca (U. Groningen)

$$\langle v \rangle \rangle^2]^{\frac{1}{2}}$$

Varvenne, Luque, Curtin (2016) Acta Mater 118, 164 10

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 Maresca and Curtin (2020) Acta Mater 182, 235

Total energy change w.r.t. straight dislocation: $\Delta E^{tot} = E_L^{tot} - E_P^{tot}$

 E_L^{tot} : contribution of joining segments (kinks, for BCC screws)

 E_P^{tot} : contribution of ζ segments lowering the energy

 $\zeta_{\rm c}$ and w_c such that $\Delta E^{tot}/L$ is minimum!

Energy barrier and T=0K CRSS and (\rightarrow finite T, rate-dependent behaviour) determined by minimum energy structure and energy scale parameter $\Delta \tilde{E}_{p}$

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 Maresca and Curtin (2020) Acta Mater 182, 235

Varvenne, Luque, Curtin (2016) Acta Mater 118, 164 12

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 13

Strengthening Mechanisms

Cross-kink/Dipole/Jog unpinning τ_{xk}

advancement τ_P

Intermediate (unstable)

Total energy change per total length L E_k kink energy

Length w = a (Peierls valleys spacing), too costly to form longer kinks.

Minimizing w.r.t. ζ yields the penalization $E_L = \frac{1}{2}E_P$. Then, $\kappa = 0.39$ and $\beta = 0.72$ are determined self-consistently (numerically)

Repeating unit:

$$w_c = a$$

Characteristic length scale:

 $\rightarrow \zeta_c = \left(1.083 \frac{E_k}{\Delta \tilde{E}_n}\right)^2$

Characteristic energy barrier in front of 2.5 ζ_c segments: $\rightarrow \Delta E_b = 2.7 E_k$ (also computed with three-choice model)

 $2.5 \zeta_c$

Maresca and Curtin (2020) Acta Mater 182, 144

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 15

Strengthening mechanisms: Peierls mechanism (low T)

 $\Delta E'_{h} = 2.7 E_{k} - 2E_{k} = 0.7E_{k}$ (2 kinks are annihilated as a 2.5 ζ_{c} segment moves forward)

Strengthening mechanisms: Kink glide mechanism (intermediate T)

Total enthalpy:

$$H_{\rm k}(z) = 1.37 \sqrt{w_{\rm k}/b} \Delta \tilde{E}_p \ln\left(2.3 \frac{z}{w_{\rm k}} + 1\right) + 1.37 E_{\rm k} \frac{z}{2.5}$$

Total enthalpy barrier:

$$\longrightarrow \Delta H_{\rm k}(\tilde{\tau}_{\rm k}) = 1.37 \sqrt{w_{\rm k}/b} \Delta \tilde{E}_p \left(\tilde{\tau}_{\rm k} - {\rm lm}\right)$$

 $ilde{ au}_{
m k}$

Stress vs enthalpy:

$$\frac{\tau - \tau_b}{\tau_{k,0} - \tau_b} = \left[\exp\left(0.89\Delta \tilde{H}_k + 0.5\Delta \tilde{H}_k^{\frac{1}{4}} + 0.6\right) - 1 \right]^{-1}$$

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 17

$$\frac{\tau abz}{\zeta_c} - \frac{\tau abz}{2}$$
$$= \frac{\tau - \tau_b}{\tau_{k,0} - \tau_b}$$

Strengthening mechanisms: Cross-kink mechanism (moderate to high T)

Standard analysis for creation of point defects:

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 18

Screw dislocations strengthening mechanisms: analytical theory

$$\tau(\dot{\varepsilon}, T) = \tau_{\mathrm{xk}} \left(\dot{\varepsilon}, T \right) + \min \left[\tau_{\mathrm{k}} \left(\dot{\varepsilon}, T \right), \tau_{P} \left(\dot{\varepsilon}, T \right) \right]$$

where

$$\begin{aligned} \tau_{\rm xk} \left(\dot{\varepsilon}, T \right) &= \tau_{\rm xk,0} \left[1 - \left(\frac{\Delta H}{E_{\rm v/i}} \right)^{\frac{2}{3}} \right] \\ \tau_{\rm k} \left(\dot{\varepsilon}, T \right) &= \tau_b + \frac{\tau_{\rm k,0} - \tau_b}{\left\{ \exp \left[0.89 \frac{\Delta H}{\Delta E_{\rm k,0}} + 0.5 \left(\frac{\Delta H}{\Delta E_{\rm k,0}} \right)^{\frac{1}{4}} + 0.6 \right] - 1 \right\}}, \quad \frac{\tau - \tau_b}{\tau_{\rm k,0} - \tau_b} > \frac{1}{3.45 \frac{\zeta_c}{w_{\rm k}} + 1}, \\ \tau_{\rm k} \left(\dot{\varepsilon}, T \right) &= \tau_b - (\tau_{\rm k,0} - \tau_b) \frac{w_{\rm k}}{3.45 \zeta_c} \frac{\Delta H}{\Delta E_{\rm k,0}}, \quad \frac{\tau - \tau_b}{\tau_{\rm k,0} - \tau_b} < \frac{1}{3.45 \frac{\zeta_c}{w_{\rm k}} + 1}, \\ \tau_P (\dot{\varepsilon}, T) &= \tau_{P,0} \left[1 - \left(\frac{\Delta H}{\Delta E_{b,P}} \right)^{\frac{2}{3}} \right]. \end{aligned}$$

Finite temperature/strain rate behaviour by using an Arrhenius model, $\Delta H = kT$

Solid solution strengthening – F. Maresca (U. Groningen)

king

sm

$$\ln\left(\frac{\dot{\varepsilon}_0}{\dot{\varepsilon}}\right)$$

Maresca and Curtin (2020) Acta Mater 182, 144 19

All theory quantities expressed w.r.t. few material parameters:

- Kink energy E_k 1)
- 2) Solute-dislocation interaction parameter $\Delta \tilde{E}_{p}$
- 3) Vacancy/self-interstitial formation energies $E_{v/i}$
- Peierls barrier ΔV_P 4)

$$\zeta_c = \left(1.083 \frac{E_k}{\Delta \tilde{E}_p}\right)^2 b$$

$$\tau_{\rm xk,0} = \frac{\pi E_{\rm v/i}}{ab\zeta_{\rm v/i}} \qquad (\zeta_{\rm v} = 7.5\zeta_c,$$

$$\tau_b = \frac{1.08E_k}{ab\zeta_c}$$

$$\tau_{\rm k,0} = \frac{6.3\Delta \tilde{E}_p}{ab^2\sqrt{w_{\rm k}/b}} + \tau_b$$

$$\Delta E_{\rm k,0} = 1.37\sqrt{w_{\rm k}/b}\Delta \tilde{E}_p$$

$$\tau_{P,0} = \frac{\pi\Delta V_P}{ba} + \frac{0.44E_k}{ba\zeta_c} \left[1 - \frac{1}{(0,0)}\right]^2$$

$$\Delta E_{b,P} = \frac{(10\Delta V_P\zeta_c + 0.7E_k)^3}{(20\Delta V_P\zeta_c + 0.7E_k)^2}.$$

Maresca and Curtin (2020) Acta Mater 182, 144

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 21

X-kink spacing in Fe 9%Si:

(expts Caillard: 143 +/-54 nm)

Only 2 quantities fitted.

Solid solution strengthening – F. Maresca (U. Groningen)

Only 2 quantities fitted.

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144

23

Only 2 quantities fitted.

Conclusions – Screw theory

Fully derived parameter-free theory for screw dislocation strengthenig from dilute to "high entropy" alloys.

- **Minimum energy screw dislocation kinked** in alloys: kink nucleation *not* the controlling mechanism
- The theory is based on three **main mechanisms** (Peierls, kink glide and cross-kinking) acting at different 2) temperature regimes, with **cross-kinking** dominant at higher T.
- Theory **rationalizes** the main experimental results on Fe-Si, Nb-Mo, Nb-W alloys and on Nb-Ti-Zr HEAs 3)
- In screw-controlled Nb-Ti-Zr, **no high strength retention** above 1300K.

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 144 24

Motivations:

1. Screw-controlled Ti-Nb-Zr not retaining strength above 1300K:

different mechanism responsible for high-T strength in MoNbTaVW?

- Experiments in NbMo* and FeSi** 2. reveal decreased edge mobility w.r.t. screws
- 3. X-ray line analysis in TiZrHfNbTa indicate edge dislocations dominance at yielding***
- 4. Yield strengths correlate with solute misfit volume (Yao et al. 2017) \rightarrow hallmark of edge strengthening!

*Statham, Koss and Christian (1972); **Caillard (2013); ***Dirras et al. (2015)

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 235 25

NbTaTiV BCC High Entropy Alloy

Solid solution strengthening – F. Maresca (U. Groningen)

CrMoNbV BCC High Entropy Alloy

Lee, Maresca et al. (2021) Nature Communications 12, 5474

$$\Delta E^{tot}(\zeta, w) / L = \begin{bmatrix} \kappa \frac{\Gamma w^2}{2\zeta} - \beta \left(\frac{\zeta}{2\sqrt{2}b}\right)^{\frac{1}{2}} \Delta \tilde{E}_p(w) \end{bmatrix} \frac{1}{(1+\kappa)\zeta}$$
 Total energy change per total length

$$\bigcap_{E_L} \qquad \bigcap_{E_P} \qquad \Gamma = \frac{1}{12} \mu b^2 \text{ line tension}$$

Minimizing w.r.t. ζ yields the penalization $E_L = \frac{1}{4}E_P$ (lower than screw case!). Then, $\kappa = 0.56$ and $\beta = 0.83$ are determined self-consistently (numerically)

$$\Rightarrow \Delta E_b = 1.11 \left(\frac{w_c^2 \Gamma \Delta \tilde{E}_p^2(w_c)}{b}\right)^{\frac{1}{3}} \quad \text{(from stochastic simulations)}$$

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 235

One single strengthening mechanism!

Advancement of ζ_c segments over the energy barrier ΔE_b

Total energy barrier: $\rightarrow \Delta E(\tau) = \Delta E_b \left(1 - \frac{\tau}{\tau_{u0}}\right)^{\frac{3}{2}}$

T=0K flow-stress

$$\tau_{y0} = \frac{\pi}{2} \frac{\Delta E_b}{b\zeta_c(w_c)w_c} = 1.01 \left(\frac{\Delta \tilde{E}_p^4(w_c)}{\Gamma b^5 w_c^5}\right)^{\frac{1}{3}}$$

Finite T, finite strain-rate flow stress

1) Low T
$$(\tau/\tau_{y0} > 0.5)$$

 $\tau_y(T, \dot{\varepsilon}) = \tau_{y0} \left[1 - \left(\frac{kT}{\Delta E_b} \ln \frac{\dot{\varepsilon}_0}{\dot{\varepsilon}} \right)^{\frac{2}{3}} \right]$
2) High T $(\tau/\tau_{y0} < 0.5)$
 $\tau_y(T, \dot{\varepsilon}) = \tau_{y0} \exp \left(-\frac{1}{0.55} \frac{kT}{\Delta E_b} \ln \frac{\dot{\varepsilon}_0}{\dot{\varepsilon}} \right)^{\frac{2}{3}} \right]$

Solid solution strengthening – F. Maresca (U. Groningen)

[Leyson, Curtin (2016) MSMSE 24, 065005]

Maresca and Curtin (2020) Acta Mater 182, 235

Theory vs T=300K expts and MD simulations

Theory length-scales
vs MD simulations

Mo-Nb-Ta-V-W	w_c theory (Å)	w_c simulations (Å)	$\lambda/4$ theory (Å)	$\lambda/4$ simulations (Å)
0.0-33.3-33.3-33.3-0.0	12.0	10.0	38.7	40.2
21.7-20.6-15.6-21-21.1	12.0	8.4	48.9	49.4
25.6-22.7-24.4-0.0-27.3	12.1	9.1	61.1	72.5
24.9-25.8-26.6-22.7-0.0	12.1	11.0	45.6	52.4
0.0-28.5-29.65-20.67-21.18	12.1	9.3	48.4	50.7

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 235

Maresca and Curtin (2020) Acta Mater 182, 235 30

Optimization performed over 10M compositions in AI-Cr-Mo-Nb-Ta-W-V-Ti-Zr-Hf

See:

Lee, Maresca et al. (2021) Nature Communications 12, 5474

MATLAB implementation available at

https://doi.org/10.24435/materialscloud:fs-27

Taylor factor: 3.067

Solid solution strengthening – F. Maresca (U. Groningen)

Maresca and Curtin (2020) Acta Mater 182, 235 31

Shown here: Mo-Nb-Ta-V-W subset

Solid solution strengthening – F. Maresca (U. Groningen) Lee, Maresca et al. (2021) Nature Communications 12, 5474

Solid solution strengthening in BCC random alloys

Fully derived parameter-free theory for **screw and edge** strengthenig from dilute to "high entropy" alloys.

- Minimum energy **screw dislocation is kinked** in alloys: 1) x-kink strengthening controls high-T strength (up to Tm/2).
- Edge strengthening rationalizes observed high-T strength 2) in refractory BCC HEAs: xk-unpinning not operating above Tm/2.
- Edge theory reduced to **simple form**, function of elastic moduli and volume misfits. 3)
- Theory used for **optimization** to find **new compositions** in immense BCC refractory alloys space. 4)

Challenge: (Single-)phase predictions *ab-initio* [see Lee, Maresca et al. 2021; Ferrari, Lysogorskyi, Drautz (2021) PRM 5, 063606]

More details in:

Maresca & Curtin (2020) Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater. 182:235 Maresca & Curtin (2020) Theory of screw dislocation strengthening in random BCC alloys from dilute to "High-Entropy" alloys. Acta Mater. 182:144 Yin, Maresca & Curtin (2020) Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys. Acta Mater. 188:486 Ghafarollahi, Maresca & Curtin (2019) Solute/screw dislocation interaction energy parameter for strengthening in bcc dilute to high entropy alloys. Modelling Simul. Mater. Sci. Eng. 27:085011 Lee, Maresca, Feng, Chou, Ungar, Widom, An, Poplawski, Chou, Liaw, Curtin (2021)

Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nature Communications 12:5474

Solid solution strengthening – F. Maresca (U. Groningen)

