Introduction to Solid Solution Strengthening with *GreenALM*

Franco Moitzi

GreenALM Tutorials, 14.10.2021

Definition of strenghening and strength

We asked 100 People how they define strength

Disordered alloys with multiple components

• Overcome *strength-ductility trade off:* Ductility due to cubic phase + significant solute solution strengthening

Difficulties in modelling solute-dislocation interaction

- Explicit calculation is out of reach for ab-initio
- Model approach: strength only using bulk materials properties. Conventional supercell approach too demanding.

Possible solution

• Green's function DFT methods for calculating substitutionally and magnetically disordered alloys.

Varvenne-Curtin model

Experimentally validated model for strength only using bulk materials properties of the alloy

$$\Delta \tau = f(C_{44}, C', B, \frac{\partial V_{Alloy}}{\partial c_i}; T)$$

Linear elastic parameters

Volume misfit of solute and matrix

C. Varvenne, Acta Materialia 18, 164 (2016)

Accurate prediction of the equilibrium volumes

 $\Delta \tau$:Critical resolved shear stress (CRSS)

Correcting systematical errors in the equilibrium volumes

Semiempircal correction of exchange-correlation effects

Element in ground state

Randomly disordered alloy

 $E(V) = E_{LDA}(V) - \sum c^{(i)} P_{XC}^{(i)} V$ E(V) $E_{LDA}(V)$

A. van de Walle and G. Ceder. *PRB* **59**, 14992 (1999)

Non-local exchange-correlations effects are included a-posteriori by an element specific pressure

Effects of pressure correction:

- Corrects systematic errors of the XC functional
- Improves prediction of linear response properties
- Transferable methodology

Computationally efficient methodology for calculating properties of disordered systems

Workflow gives the critical resolved shear stress (CRSS) contribution due to solute solution strengthening

Calculation of elastic properties

Computationally efficient methodology for calculating properties of disordered systems

 δ

Volume conserving orthorombic and monoclinic distortions

0.00

 δ

8

m

<u>m</u>Cr

• Concentration constrain: simple finite difference won't work

$$\frac{\partial V_{alloy}}{\partial c^{(n)}} \qquad \qquad V_{alloy} = V_{alloy}(\{c_i\}) \qquad \qquad 1 = \sum c_i$$

• Fit to a linear function that takes into account constrain

$$V_{alloy} = a_0 + \sum_{i=1}^n a_i c_i$$

Concentration dependency is linear

Comparison of direct experimental results and workflow

Validation of input quantities for the strengthening in NiCoCr

Comparison strength from experiment¹ and ab-initio workflow

Exp.: [1] Z. Wu, Acta Materialia (2014)

Exp.: [2] H. Bei, Materials Sci. a. Eng. A (2017)

Sources of temperature dependency of $\Delta \tau$:

- Arrhenius-like dependency due to thermal activation mechanism
- Linear elastic constants and misfit volumes

Energy barrier is also temperature-dependent

 Δau is mostly influenced by:

- Misfit delta δ : concentration-weighted RMS of misfit volumes
- Shear modulus G_V

Result suggest that a reduced Fe or Cr is beneficial for the strength